• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年5月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217866
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對(duì)輸入的數(shù)組排序,然后類似于01對(duì)a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時(shí)候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a(bǔ)[i]加進(jìn)以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨(dú)作為一個(gè)選擇(這里需要先對(duì)a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點(diǎn)的序列的個(gè)數(shù),再組合數(shù)學(xué)
                    td[n][i]和tu[n][i]分別表示個(gè)數(shù)為n,以i開始的上升和下降的序列個(gè)數(shù)
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調(diào)歐幾里德旅行商問題(明顯階段dp)
                    動(dòng)態(tài)規(guī)劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態(tài)表示: d[i][j][k] (i為13為二進(jìn)制表示點(diǎn)的狀態(tài), j為當(dāng)前節(jié)點(diǎn), k為到達(dá)j的前驅(qū)節(jié)點(diǎn))

            posted on 2007-04-20 18:10 閱讀(2127) 評(píng)論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-22 08:56 byron
            豪大牛,問一下,這是一些題目嗎????  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:59 姜雨生
            應(yīng)該可以更加優(yōu)化  回復(fù)  更多評(píng)論
              
            亚洲国产精品无码久久久久久曰| 久久久久久久97| 777久久精品一区二区三区无码| 久久久久国产一级毛片高清版| 国产亚州精品女人久久久久久| 久久天天躁狠狠躁夜夜2020老熟妇| 中文字幕日本人妻久久久免费| 久久精品无码专区免费青青| 久久se精品一区二区| 亚洲中文字幕久久精品无码APP| 国产高潮国产高潮久久久| 少妇熟女久久综合网色欲| 青青草国产精品久久久久| 欧美午夜A∨大片久久| 精品无码人妻久久久久久| 亚洲国产精品无码久久久不卡 | 欧美无乱码久久久免费午夜一区二区三区中文字幕| 久久精品国产99久久久香蕉| 久久免费国产精品一区二区| 一本色道久久综合狠狠躁篇| 国产精品九九久久免费视频| 久久这里只有精品首页| 久久伊人精品一区二区三区| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 亚洲精品午夜国产va久久| 国产成人精品综合久久久| 色欲综合久久躁天天躁蜜桃| 色老头网站久久网| 内射无码专区久久亚洲| 久久93精品国产91久久综合| 久久96国产精品久久久| 久久se精品一区精品二区| 精品久久久久久亚洲精品| 久久久久亚洲AV无码永不| 中文字幕无码精品亚洲资源网久久| 国产精品久久久久久久久软件| 理论片午午伦夜理片久久| 亚洲欧美一级久久精品| 亚洲欧美另类日本久久国产真实乱对白| 久久五月精品中文字幕| 99久久综合国产精品免费|