• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年6月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊(cè)

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217820
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對(duì)輸入的數(shù)組排序,然后類似于01對(duì)a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時(shí)候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a(bǔ)[i]加進(jìn)以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨(dú)作為一個(gè)選擇(這里需要先對(duì)a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點(diǎn)的序列的個(gè)數(shù),再組合數(shù)學(xué)
                    td[n][i]和tu[n][i]分別表示個(gè)數(shù)為n,以i開始的上升和下降的序列個(gè)數(shù)
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調(diào)歐幾里德旅行商問題(明顯階段dp)
                    動(dòng)態(tài)規(guī)劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態(tài)表示: d[i][j][k] (i為13為二進(jìn)制表示點(diǎn)的狀態(tài), j為當(dāng)前節(jié)點(diǎn), k為到達(dá)j的前驅(qū)節(jié)點(diǎn))

            posted on 2007-04-20 18:10 閱讀(2127) 評(píng)論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-22 08:56 byron
            豪大牛,問一下,這是一些題目嗎????  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:59 姜雨生
            應(yīng)該可以更加優(yōu)化  回復(fù)  更多評(píng)論
              
            亚洲精品无码成人片久久| 99久久精品无码一区二区毛片| 久久久久AV综合网成人| 久久99热这里只有精品国产| 少妇熟女久久综合网色欲| 99久久精品免费看国产一区二区三区| 国产精品伦理久久久久久| 久久国产精品国产自线拍免费| 久久夜色精品国产亚洲| 久久AV高潮AV无码AV| 国产亚洲婷婷香蕉久久精品| 九九久久精品无码专区| 美女久久久久久| 精品久久久久久中文字幕大豆网 | 精品久久久久久久久久久久久久久 | 久久AV高潮AV无码AV| 亚洲va中文字幕无码久久不卡| 久久久久亚洲av无码专区导航 | 亚洲精品tv久久久久久久久| 人妻精品久久无码区| 精品久久久久久无码国产| 久久人人爽人人爽人人片AV麻豆 | 久久人爽人人爽人人片AV| 久久国产热精品波多野结衣AV| 国产成人久久激情91| 久久AV无码精品人妻糸列| 欧美一区二区三区久久综合| 国产成人久久精品区一区二区| 久久久久99精品成人片三人毛片| 无码AV中文字幕久久专区| 久久久久免费精品国产| 久久香综合精品久久伊人| 日本一区精品久久久久影院| 午夜福利91久久福利| 99久久免费只有精品国产| 久久伊人精品一区二区三区| 久久综合九色综合精品| 色欲久久久天天天综合网| 久久国产热这里只有精品| 久久精品中文闷骚内射| 看全色黄大色大片免费久久久 |