• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年9月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218108
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            USE?并查集和線段樹

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include?<iostream>
            using?namespace?std;
            const?int?MAXN?=?200001;

            class?UFset
            {
            public:
            ????
            int?parent[MAXN];
            ????UFset();
            ????
            int?Find(int);
            ????
            void?Union(int,?int);
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            -1,?sizeof(parent));
            }


            int?UFset::Find(int?x)
            {
            ????
            if?(parent[x]?<?0)
            ????????
            return?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            =?Find(parent[x]);
            ????????
            return?parent[x];
            ????}
            //?壓縮路徑
            }


            void?UFset::Union(int?x,?int?y)
            {
            ????
            int?pX?=?Find(x);
            ????
            int?pY?=?Find(y);
            ????
            int?tmp;
            ????
            if?(pX?!=?pY)
            ????
            {
            ????????tmp?
            =?parent[pX]?+?parent[pY];?//?加權(quán)合并
            ????????if?(parent[pX]?>?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            =?pY;
            ????????????parent[pY]?
            =?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            =?pX;
            ????????????parent[pX]?
            =?tmp;
            ????????}

            ????}

            }


            int?f[(MAXN+1)*3]?=?{0};
            int?n,?m;

            void?initTree()
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]?
            =?n;
            ????????c?
            =?c?*?2;
            ????????r?
            =?(l?+?r)?/?2;
            ????}

            ????f[c]?
            =?n;//葉子初始化
            }


            void?insertTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            ++;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            ++;//葉子增加1
            }


            void?delTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            --;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            --;//葉子減少1
            }


            int?searchTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????mid?
            =?(l?+?r)?/?2;
            ????????
            if?(k?<=?f[2*c+1])
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -=?f[2*c+1];
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????
            return?l;
            }


            int?main()
            {
            ????
            int?i,?j;
            ????
            int?x,?y;
            ????
            int?k;
            ????
            int?l,?r;
            ????
            int?cmd;
            ????
            int?px,?py;
            ????
            int?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            "%d%d",?&n,?&m);
            ????initTree();
            ????
            for?(i=0;?i<m;?i++)
            ????
            {
            ????????scanf(
            "%d",?&cmd);
            ????????
            if?(cmd?==?0)
            ????????
            {
            ????????????scanf(
            "%d%d",?&x,?&y);
            ????????????px?
            =?UFS.Find(x);
            ????????????py?
            =?UFS.Find(y);
            ????????????
            if?(px?!=?py)
            ????????????
            {
            ????????????????tx?
            =?-UFS.parent[px];
            ????????????????ty?
            =?-UFS.parent[py];
            ????????????????tz?
            =?tx?+?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            "%d",?&k);
            ????????????printf(
            "%d\n",?searchTree(k));
            ????????}

            ????}

            ????
            return?0;
            }
            posted on 2006-09-06 13:30 閱讀(818) 評論(4)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解的題目, 紀念一下 2006-09-08 23:01 Optimistic
            哇...偶木了  回復(fù)  更多評論
              
            # re: 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解的題目, 紀念一下 2006-09-08 23:11 
            其實線段樹比較好懂, 但是難在怎么運用-_-個人感覺, 摸索中!~~~  回復(fù)  更多評論
              
            # re: 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解的題目, 紀念一下 2006-09-28 12:21 踏雪赤兔
            進步很快哩~~贊一個!
            P.S.博客手拉手弄好了~  回復(fù)  更多評論
              
            # re: 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解的題目, 紀念一下 2006-09-28 12:57 
            thx!~:)  回復(fù)  更多評論
              
            无码国内精品久久人妻蜜桃| 久久久噜噜噜久久| 99久久99久久| 久久久久人妻一区精品果冻| 伊人色综合久久天天人手人婷| 99久久精品毛片免费播放| 日韩久久久久中文字幕人妻| 99久久久精品免费观看国产| 亚洲第一永久AV网站久久精品男人的天堂AV| 久久人人爽人人爽人人av东京热| 国产亚洲婷婷香蕉久久精品| 欧美精品国产综合久久| 99久久精品国产一区二区蜜芽| 精品人妻伦九区久久AAA片69| 亚洲国产精品人久久| 亚洲精品乱码久久久久久 | 日本精品一区二区久久久| 少妇高潮惨叫久久久久久| 人妻少妇精品久久| 国内精品欧美久久精品| 久久久久久久久久久久中文字幕| 亚洲精品美女久久久久99小说| 亚洲午夜精品久久久久久人妖| 久久国产精品77777| 伊人久久大香线蕉综合影院首页| 久久天天躁狠狠躁夜夜2020| 国产91久久综合| 国产精品狼人久久久久影院| 久久综合九色综合精品| 国内精品久久人妻互换| 国内精品伊人久久久久AV影院| 亚洲欧美日韩中文久久| 亚洲国产精品一区二区久久hs| 狠狠色综合网站久久久久久久高清 | 狠狠色婷婷久久综合频道日韩 | 女同久久| 色狠狠久久综合网| 精品久久久久久无码免费| 精品一久久香蕉国产线看播放 | 久久人人妻人人爽人人爽| 久久精品aⅴ无码中文字字幕重口 久久精品a亚洲国产v高清不卡 |