• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年8月>
            303112345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217836
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            USE?并查集和線段樹

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include?<iostream>
            using?namespace?std;
            const?int?MAXN?=?200001;

            class?UFset
            {
            public:
            ????
            int?parent[MAXN];
            ????UFset();
            ????
            int?Find(int);
            ????
            void?Union(int,?int);
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            -1,?sizeof(parent));
            }


            int?UFset::Find(int?x)
            {
            ????
            if?(parent[x]?<?0)
            ????????
            return?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            =?Find(parent[x]);
            ????????
            return?parent[x];
            ????}
            //?壓縮路徑
            }


            void?UFset::Union(int?x,?int?y)
            {
            ????
            int?pX?=?Find(x);
            ????
            int?pY?=?Find(y);
            ????
            int?tmp;
            ????
            if?(pX?!=?pY)
            ????
            {
            ????????tmp?
            =?parent[pX]?+?parent[pY];?//?加權合并
            ????????if?(parent[pX]?>?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            =?pY;
            ????????????parent[pY]?
            =?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            =?pX;
            ????????????parent[pX]?
            =?tmp;
            ????????}

            ????}

            }


            int?f[(MAXN+1)*3]?=?{0};
            int?n,?m;

            void?initTree()
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]?
            =?n;
            ????????c?
            =?c?*?2;
            ????????r?
            =?(l?+?r)?/?2;
            ????}

            ????f[c]?
            =?n;//葉子初始化
            }


            void?insertTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            ++;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            ++;//葉子增加1
            }


            void?delTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            --;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            --;//葉子減少1
            }


            int?searchTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????mid?
            =?(l?+?r)?/?2;
            ????????
            if?(k?<=?f[2*c+1])
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -=?f[2*c+1];
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????
            return?l;
            }


            int?main()
            {
            ????
            int?i,?j;
            ????
            int?x,?y;
            ????
            int?k;
            ????
            int?l,?r;
            ????
            int?cmd;
            ????
            int?px,?py;
            ????
            int?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            "%d%d",?&n,?&m);
            ????initTree();
            ????
            for?(i=0;?i<m;?i++)
            ????
            {
            ????????scanf(
            "%d",?&cmd);
            ????????
            if?(cmd?==?0)
            ????????
            {
            ????????????scanf(
            "%d%d",?&x,?&y);
            ????????????px?
            =?UFS.Find(x);
            ????????????py?
            =?UFS.Find(y);
            ????????????
            if?(px?!=?py)
            ????????????
            {
            ????????????????tx?
            =?-UFS.parent[px];
            ????????????????ty?
            =?-UFS.parent[py];
            ????????????????tz?
            =?tx?+?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            "%d",?&k);
            ????????????printf(
            "%d\n",?searchTree(k));
            ????????}

            ????}

            ????
            return?0;
            }
            posted on 2006-09-06 13:30 閱讀(816) 評論(4)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:01 Optimistic
            哇...偶木了  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:11 
            其實線段樹比較好懂, 但是難在怎么運用-_-個人感覺, 摸索中!~~~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:21 踏雪赤兔
            進步很快哩~~贊一個!
            P.S.博客手拉手弄好了~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:57 
            thx!~:)  回復  更多評論
              
            亚洲香蕉网久久综合影视| 91精品国产91久久久久久蜜臀| 久久综合精品国产一区二区三区| 久久久久久久亚洲精品| 精品国产乱码久久久久久人妻| 国产精品美女久久久久网| 亚洲国产成人久久综合区| 久久亚洲国产中v天仙www | 久久受www免费人成_看片中文| 久久国产精品无码一区二区三区| 国内精品久久久久久不卡影院 | 久久免费视频一区| 久久精品卫校国产小美女| 99久久精品国内| 久久精品国产亚洲Aⅴ蜜臀色欲| 亚洲欧美伊人久久综合一区二区 | 狠狠久久综合| 欧美牲交A欧牲交aⅴ久久| 久久中文字幕人妻熟av女| 深夜久久AAAAA级毛片免费看| 国产精品久久久久9999| 免费无码国产欧美久久18| 久久九九全国免费| 亚洲午夜久久久久久久久电影网| 久久久精品久久久久特色影视| 99久久人妻无码精品系列蜜桃| 亚洲色大成网站WWW久久九九| 国产精品成人久久久久久久| 久久WWW免费人成—看片| 国产精品禁18久久久夂久| 久久精品国产99久久久古代| 久久久久人妻一区二区三区| 青青草原综合久久大伊人导航| 亚洲国产成人久久综合一| 青青国产成人久久91网| 99久久这里只有精品| 91精品国产综合久久婷婷| aaa级精品久久久国产片| 久久99精品久久久久久久不卡| 人妻少妇久久中文字幕| 天堂久久天堂AV色综合|