• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 100,  comments - 15,  trackbacks - 0

            Bellman-Ford 算法及其優(yōu)化

            Bellman-Ford算法與另一個(gè)非常著名的Dijkstra算法一樣,用于求解單源點(diǎn)最短路徑問題。Bellman-ford算法除了可求解邊權(quán)均非負(fù)的問題外,還可以解決存在負(fù)權(quán)邊的問題(意義是什么,好好思考),而Dijkstra算法只能處理邊權(quán)非負(fù)的問題,因此 Bellman-Ford算法的適用面要廣泛一些。但是,原始的Bellman-Ford算法時(shí)間復(fù)雜度為 OVE,Dijkstra算法的時(shí)間復(fù)雜度高,所以常常被眾多的大學(xué)算法教科書所忽略,就連經(jīng)典的《算法導(dǎo)論》也只介紹了基本的Bellman-Ford算法,在國(guó)內(nèi)常見的基本信息學(xué)奧賽教材中也均未提及,因此該算法的知名度與被掌握度都不如Dijkstra算法。事實(shí)上,有多種形式的Bellman-Ford算法的優(yōu)化實(shí)現(xiàn)。這些優(yōu)化實(shí)現(xiàn)在時(shí)間效率上得到相當(dāng)提升,例如近一兩年被熱捧的SPFAShortest-Path Faster Algoithm 更快的最短路徑算法)算法的時(shí)間效率甚至由于Dijkstra算法,因此成為信息學(xué)奧賽選手經(jīng)常討論的話題。然而,限于資料匱乏,有關(guān)Bellman-Ford算法的諸多問題常常困擾奧賽選手。如:該算法值得掌握么?怎樣用編程語言具體實(shí)現(xiàn)?有哪些優(yōu)化?與SPFA算法有關(guān)系么?本文試圖對(duì)Bellman-Ford算法做一個(gè)比較全面的介紹。給出幾種實(shí)現(xiàn)程序,從理論和實(shí)測(cè)兩方面分析他們的時(shí)間復(fù)雜度,供大家在備戰(zhàn)省選和后續(xù)的noi時(shí)參考。

            Bellman-Ford算法思想

            Bellman-Ford算法能在更普遍的情況下(存在負(fù)權(quán)邊)解決單源點(diǎn)最短路徑問題。對(duì)于給定的帶權(quán)(有向或無向)圖 G=V,E),其源點(diǎn)為s,加權(quán)函數(shù) w 邊集 E 的映射。對(duì)圖G運(yùn)行Bellman-Ford算法的結(jié)果是一個(gè)布爾值,表明圖中是否存在著一個(gè)從源點(diǎn)s可達(dá)的負(fù)權(quán)回路。若不存在這樣的回路,算法將給出從源點(diǎn)s G的任意頂點(diǎn)v的最短路徑d[v]

            Bellman-Ford算法流程分為三個(gè)階段:

            (1)    初始化:將除源點(diǎn)外的所有頂點(diǎn)的最短距離估計(jì)值 d[v] ←+∞, d[s] ←0;

            (2)    迭代求解:反復(fù)對(duì)邊集E中的每條邊進(jìn)行松弛操作,使得頂點(diǎn)集V中的每個(gè)頂點(diǎn)v的最短距離估計(jì)值逐步逼近其最短距離;(運(yùn)行|v|-1次)

            (3)    檢驗(yàn)負(fù)權(quán)回路:判斷邊集E中的每一條邊的兩個(gè)端點(diǎn)是否收斂。如果存在未收斂的頂點(diǎn),則算法返回false,表明問題無解;否則算法返回true,并且從源點(diǎn)可達(dá)的頂點(diǎn)v的最短距離保存在 d[v]中。

            算法描述如下:

            Bellman-Ford(G,w,s) boolean   //G ,邊集 函數(shù) w s為源點(diǎn)

            1        for each vertex v ∈ V(G) do        //初始化 1階段

            2            d[v] ←+∞

            3        d[s] ←0;                             //1階段結(jié)束

            4        for i=1 to |v|-1 do               //2階段開始,雙重循環(huán)。

            5           for each edge(u,v) ∈E(G) do //邊集數(shù)組要用到,窮舉每條邊。

            6              If d[v]> d[u]+ w(u,v) then      //松弛判斷

            7                 d[v]=d[u]+w(u,v)               //松弛操作   2階段結(jié)束

            8        for each edge(u,v) ∈E(G) do

            9            If d[v]> d[u]+ w(u,v) then

            10            Exit false

            11    Exit true

            下面給出描述性證明:

               首先指出,圖的任意一條最短路徑既不能包含負(fù)權(quán)回路,也不會(huì)包含正權(quán)回路,因此它最多包含|v|-1條邊。

               其次,從源點(diǎn)s可達(dá)的所有頂點(diǎn)如果 存在最短路徑,則這些最短路徑構(gòu)成一個(gè)以s為根的最短路徑樹。Bellman-Ford算法的迭代松弛操作,實(shí)際上就是按頂點(diǎn)距離s的層次,逐層生成這棵最短路徑樹的過程。

            在對(duì)每條邊進(jìn)行1遍松弛的時(shí)候,生成了從s出發(fā),層次至多為1的那些樹枝。也就是說,找到了與s至多有1條邊相聯(lián)的那些頂點(diǎn)的最短路徑;對(duì)每條邊進(jìn)行第2遍松弛的時(shí)候,生成了第2層次的樹枝,就是說找到了經(jīng)過2條邊相連的那些頂點(diǎn)的最短路徑……。因?yàn)樽疃搪窂阶疃嘀话瑋v|-1 條邊,所以,只需要循環(huán)|v|-1 次。

            每實(shí)施一次松弛操作,最短路徑樹上就會(huì)有一層頂點(diǎn)達(dá)到其最短距離,此后這層頂點(diǎn)的最短距離值就會(huì)一直保持不變,不再受后續(xù)松弛操作的影響。(但是,每次還要判斷松弛,這里浪費(fèi)了大量的時(shí)間,怎么優(yōu)化?單純的優(yōu)化是否可行?)

            如果沒有負(fù)權(quán)回路,由于最短路徑樹的高度最多只能是|v|-1,所以最多經(jīng)過|v|-1遍松弛操作后,所有從s可達(dá)的頂點(diǎn)必將求出最短距離。如果 d[v]仍保持 +∞,則表明從s到v不可達(dá)。

            如果有負(fù)權(quán)回路,那么第 |v|-1 遍松弛操作仍然會(huì)成功,這時(shí),負(fù)權(quán)回路上的頂點(diǎn)不會(huì)收斂。

             

             

             

            例如對(duì)于上圖,邊上方框中的數(shù)字代表權(quán)值,頂點(diǎn)A,B,C之間存在負(fù)權(quán)回路。S是源點(diǎn),頂點(diǎn)中數(shù)字表示運(yùn)行Bellman-Ford算法后各點(diǎn)的最短距離估計(jì)值。

            此時(shí)d[a]的值為1,大于d[c]+w(c,a)的值-2,由此d[a]可以松弛為-2,然后d[b]又可以松弛為-5,d[c]又可以松弛為-7.下一個(gè)周期,d[a]又可以更新為更小的值,這個(gè)過程永遠(yuǎn)不會(huì)終止。因此,在迭代求解最短路徑階段結(jié)束后,可以通過檢驗(yàn)邊集E的每條邊(u,v)是否滿足關(guān)系式 d[v]> d[u]+ w(u,v) 來判斷是否存在負(fù)權(quán)回路。

            posted on 2009-04-03 21:50 wyiu 閱讀(252) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 算法
            亚洲午夜精品久久久久久人妖| 婷婷伊人久久大香线蕉AV| 精品久久久久久久久久久久久久久| 99久久国产主播综合精品| 亚洲精品美女久久久久99小说| 日韩av无码久久精品免费| 国产成人综合久久精品尤物| 精品久久久久久久国产潘金莲| 精品久久8x国产免费观看| 婷婷久久综合九色综合绿巨人| 亚洲AV日韩AV天堂久久| 国产激情久久久久影院老熟女| 久久精品国产99久久久古代| 中文字幕久久欲求不满| 久久婷婷国产综合精品| 天天综合久久一二三区| 青青青国产精品国产精品久久久久| 久久久国产精华液| 亚洲国产综合久久天堂| 久久青草国产精品一区| 久久棈精品久久久久久噜噜| 久久久午夜精品| 欧美亚洲另类久久综合婷婷| 成人亚洲欧美久久久久| 久久青草国产手机看片福利盒子| 77777亚洲午夜久久多人| 亚洲国产精品无码久久久久久曰| 91亚洲国产成人久久精品网址| 亚洲精品无码久久久久| 久久这里的只有是精品23| 久久久久亚洲AV成人网人人网站 | 久久免费99精品国产自在现线| 国产精品久久久久久久久免费| 久久综合狠狠综合久久| 久久久久人妻一区二区三区vr| 亚洲av日韩精品久久久久久a| 狠狠精品久久久无码中文字幕| 人妻无码精品久久亚瑟影视| 欧美精品九九99久久在观看| 久久国产AVJUST麻豆| 亚洲国产精品无码成人片久久|