• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            /**
            拉格朗日插值計算
            拉格朗日插值公式:
                            n     n
              Pn(x(i))= ∑〔  ∏( x-x(j))/(x(k)-x(j)) 〕y(k)
                           k=0   j=0,
                                  j≠k
             
              屬性:插值計算法
                                                                                       n
              精度(局部截斷誤差):| f(x) - Pn(x) | = [f(ε)] / (n+1)!  ∏  ( x - x(k) ) 
             (注:其中[f(ε)]為f(ε)第n+1次求導的表達式)              k=0  
                                                    
             《數值計算方法與算法》第二版 - 科學出版社 P19

              代碼維護:2007.04.18   pengkuny
            **/

            float Lagrange(float px[], float py[], int n, float x)
            {//px,py:插值點(Xi,Yi) n:插值點個數  x:待計算的函數點
                float y = 0;
                
            for(int k=0; k<n; k++)//k控制Lagrange基函數序列
                {
                    
            float tmp = 1;//tmp表示Lagrange基函數
                    for(int i=0;i<n;i++)
                    
            {
                        
            if(i!=k)
                        
            {
                            tmp 
            = tmp * (x-px[i])/(px[k]-px[i]);  //key step
                        }

                    }

                    y 
            = y + py[k]*tmp;
                }

                
            return y;
            }


            int main()
            {
                
            float x;//插值
                float px[10];//已知(x0,y0),(x1,y1)
                float py[10];
                
            int n;//輸入已知插值組數

                cout
            <<"輸入插值組數:"<<endl;
                cin
            >>n;
                cout
            <<"輸入"<<n<<"組已知插值數(X,Y)"<<endl;
                
            for(int i=0; i<n; i++)
                
            {
                    cin
            >>px[i]>>py[i];
                }

                cout
            <<"輸入插值:"<<endl;
                cin
            >>x;

                cout
            <<"Lagrange插值結果:"<<Lagrange(px, py, n, x)<<endl;

                system(
            "pause");
                
            return 0;
            }
            posted on 2007-04-20 10:54 哈哈 閱讀(2841) 評論(1)  編輯 收藏 引用

            評論:
            # re: 拉格朗日(Lagrange)插值 2008-09-29 10:49 | xiao
            我正在學習中,請給我也發一分高質量編程指南,謝謝,
            zhangjuan2010@163.com  回復  更多評論
              
            国产色综合久久无码有码| 一本久久a久久精品亚洲| 久久国产成人午夜AV影院| 久久最新免费视频| 国内精品久久人妻互换| 亚洲国产精品无码久久青草 | 亚洲精品WWW久久久久久| 亚洲精品午夜国产VA久久成人| 波多野结衣中文字幕久久| 日日狠狠久久偷偷色综合96蜜桃| 无码伊人66久久大杳蕉网站谷歌| 久久久久亚洲AV无码专区网站| 少妇久久久久久被弄高潮| 久久强奷乱码老熟女| 久久被窝电影亚洲爽爽爽| 狠狠色丁香婷婷久久综合五月 | 精品午夜久久福利大片| 久久无码高潮喷水| 久久精品国产精品亚洲人人| 久久久免费精品re6| 久久亚洲AV成人无码软件| 日韩亚洲国产综合久久久| 久久亚洲国产欧洲精品一| 精品国产VA久久久久久久冰| 亚洲中文字幕无码久久2017| 久久大香萑太香蕉av| 亚洲欧洲久久久精品| 亚洲国产成人久久综合碰| 污污内射久久一区二区欧美日韩 | 久久亚洲日韩精品一区二区三区| 亚洲美日韩Av中文字幕无码久久久妻妇| 久久久中文字幕| 国产精品九九久久免费视频 | 久久久久黑人强伦姧人妻 | 久久精品国产免费观看| 久久这里都是精品| 久久精品卫校国产小美女| 久久这里只有精品首页| 亚洲AV无码一区东京热久久| 久久精品aⅴ无码中文字字幕不卡| 亚洲欧美日韩中文久久|