青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++ Programmer's Cookbook

{C++ 基礎} {C++ 高級} {C#界面,C++核心算法} {設計模式} {C#基礎}

c# 函數中傳入參數的類型(Parameter Passing in C# - Preamble)(very good )

Preamble: what is a reference type?

In .NET (and therefore C#) there are two main sorts of type: reference types and value types. They act differently, and a lot of confusion about parameter passing is really down to people not properly understanding the difference between them. Here's a quick explanation:

A reference type is a type which has as its value a reference to the appropriate data rather than the data itself. For instance, consider the following code:

StringBuilder sb = new StringBuilder();

(I have used StringBuilder as a random example of a reference type - there's nothing special about it.) Here, we declare a variable sb, create a new StringBuilder object, and assign to sb a reference to the object. The value of sb is not the object itself, it's the reference. Assignment involving reference types is simple - the value which is assigned is the value of the expression/variable - i.e. the reference. This is demonstrated further in this example:

StringBuilder first = new StringBuilder();
StringBuilder second = first;

Here we declare a variable first, create a new StringBuilder object, and assign to first a reference to the object. We then assign to second the value of first. This means that they both refer to the same object. They are still, however, independent variables themselves. Changing the value of first will not change the value of second - although while their values are still references to the same object, any changes made to the object through the first variable will be visible through the second variable. Here's a demonstration of that:

StringBuilder first = new StringBuilder();
StringBuilder second = first;
first.Append ("hello");
first = null;
Console.WriteLine (second);

Output:

Here, we declare a variable first, create a new StringBuilder object, and assign to first a reference to the object. We then assign to second the value of first. We then call the Append method on this object via the reference held in the first variable. After this, we set the first variable to null (a value which doesn't refer to any object). Finally, we print out the results of calling the ToString method on the StringBuilder object via the reference held in the second variable. hello is displayed, demonstrating that even though the value of first has changed, the data within the object it used to refer to hasn't - and second still refers to that object.

Class types, interface types, delegate types and array types are all reference types.

Further preamble: what is a value type?

While reference types have a layer of indirection between the variable and the real data, value types don't. Variables of a value type directly contain the data. Assignment of a value type involves the actual data being copied. Take a simple struct, for example:

public struct IntHolder
{
? ? public int i;
}

Wherever there is a variable of type IntHolder, the value of that variable contains all the data - in this case, the single integer value. An assignment copies the value, as demonstrated here:

IntHolder first = new IntHolder();
first.i=5;
IntHolder second = first;
first.i=6;
Console.WriteLine (second.i);

Output:

Here, second.i has the value 5, because that's the value first.i has when the assignment second=first occurs - the values in second are independent of the values in first apart from when the assignment takes place.

Simple types (such as float, int, char), enum types and struct types are all value types.

Note that many types (such as string appear in some ways to be value types, but in fact are reference types. These are known as immutable types. This means that once an instance has been constructed, it can't be changed. This allows a reference type to act similarly to a value type in some ways - in particular, if you hold a reference to an immutable object, you can feel comfortable in returning it from a method or passing it to another method, safe in the knowledge that it won't be changed behind your back. This is why, for instance, the string.Replace doesn't change the string it is called on, but returns a new instance with the new string data in - if the original string were changed, any other variables holding a reference to the string would see the change, which is very rarely what is desired.

Constrast this with a mutable (changeable) type such as ArrayList - if a method returns the ArrayList reference stored in an instance variable, the calling code could then add items to the list without the instance having any say about it, which is usually a problem. Having said that immutable reference types act like value types, they are not value types, and shouldn't be thought of as actually being value types.

For more information about value types, reference types, and where the data for each is stored in memory, please see my other article about the subject.

Value Parameters

There are four different kinds of parameters in C#: value parameters (the default), reference parameters (which use the ref modifier), output parameters (which use the out modifier), and parameter arrays (which use the params modifier). You can use any of them with both value and reference types. When you hear the words "reference" or "value" used (or use them yourself) you should be very clear in your own mind whether you mean that a parameter is a reference or value parameter, or whether you mean that the type involved is a reference or value type. If you can keep the two ideas separated, they're very simple.

By default, parameters are value parameters. This means that a new storage location is created for the variable in the function member declaration, and it starts off with the value that you specify in the function member invocation. If you change that value, that doesn't alter any variables involved in the invocation. For instance, if we have:

void Foo (StringBuilder x)
{
? ? x = null;
}
...
StringBuilder y = new StringBuilder();
y.Append ("hello");
Foo (y);
Console.WriteLine (y==null);

Output:

The value of y isn't changed just because x is set to null. Remember though that the value of a reference type variable is the reference - if two reference type variables refer to the same object, then changes to the data in that object will be seen via both variables. For example:

void Foo (StringBuilder x)
{
? ? x.Append (" world");
}
...
StringBuilder y = new StringBuilder();
y.Append ("hello");
Foo (y);
Console.WriteLine (y);

Output:

After calling Foo, the StringBuilder object that y refers to contains "hello world", as in Foo the data " world" was appended to that object via the reference held in x.

Now consider what happens when value types are passed by value. As I said before, the value of a value type variable is the data itself. Using the previous definition of the struct IntHolder, let's write some code similar to the above:

void Foo (IntHolder x)
{
? ? x.i=10;
}
...
IntHolder y = new IntHolder();
y.i=5;
Foo (y);
Console.WriteLine (y.i);

Output:

When Foo is called, x starts off as a struct with value i=5. Its i value is then changed to 10. Foo knows nothing about the variable y, and after the method completes, the value in y will be exactly the same as it was before (i.e. 5).

As we did earlier, check that you understand what would happen if IntHolder was declared as a class instead of a struct. You should understand why y.i would be 10 after calling Foo in that case.

Reference Parameters

Reference parameters don't pass the values of the variables used in the function member invocation - they use the variables themselves. Rather than creating a new storage location for the variable in the function member declaration, the same storage location is used, so the value of the variable in the function member and the value of the reference parameter will always be the same. Reference parameters need the ref modifier as part of both the declaration and the invocation - that means it's always clear when you're passing something by reference. Let's look at our previous examples, just changing the parameter to be a reference parameter:

void Foo (ref StringBuilder x)
{
? ? x = null;
}
...
StringBuilder y = new StringBuilder();
y.Append ("hello");
Foo (ref y);
Console.WriteLine (y==null);

Output:

Here, because a reference to y is passed rather than its value, changes to the value of parameter x are immediately reflected in y. In the above example, y ends up being null. Compare this with the result of the same code without the ref modifiers.

Now consider the struct code we had earlier, but using reference parameters:

void Foo (ref IntHolder x)
{
? ? x.i=10;
}
...
IntHolder y = new IntHolder();
y.i=5;
Foo (ref y);
Console.WriteLine (y.i);

Output:

The two variables are sharing a storage location, so changes to x are also visible through y, so y.i has the value 10 at the end of this code.

Sidenote: what is the difference between passing a value object by reference and a reference object by value?

You may have noticed that the last example, passing a struct by reference, had the same effect in this code as passing a class by value. This doesn't mean that they're the same thing, however. Consider the following code:

void Foo (??? IntHolder x)
{
? ? x = new IntHolder();
}
...
IntHolder y = new IntHolder();
y.i=5;
Foo (??? y);

In the case where IntHolder is a struct (i.e. a value type) and the parameter is a reference parameter (i.e. replace ??? with ref above), y ends up being a new IntHolder value - i.e. y.i is 0. In the case where IntHolder is a class (i.e. a reference type) and the parameter is a value parameter (i.e. remove ??? above), the value of y isn't changed - it's a reference to the same object it was before the function member call. This difference is absolutely crucial to understanding parameter passing in C#, and is why I believe it is highly confusing to say that objects are passed by reference by default instead of the correct statement that object references are passed by value by default.

Output Parameters & Parameter Arrays

Output parameters

Like reference parameters, output parameters don't create a new storage location, but use the storage location of the variable specified on the invocation. Output parameters need the out modifier as part of both the declaration and the invocation - that means it's always clear when you're passing something as an output parameter.

Output parameters are very similar to reference parameters. The only differences are:

  • The variable specified on the invocation doesn't need to have been assigned a value before it is passed to the function member. If the function member completes normally, the variable is considered to be assigned afterwards (so you can then "read" it).
  • The parameter is considered initially unassigned (in other words, you must assign it a value before you can "read" it in the function member).
  • The parameter must be assigned a value before the function member completes normally.

Here is some example code showing this, with an int parameter (int is a value type, but if you understood reference parameters properly, you should be able to see what the behaviour for reference types is):

void Foo (out int x)
{
? ? // Can't read x here - it's considered unassigned
? ? // Assignment - this must happen before the method can complete normally
? ? x = 10;
? ? // The value of x can now be read:
? ? int a = x;
}
...
// Declare a variable but don't assign a value to it
int y;

// Pass it in as an output parameter, even though its value is unassigned
Foo (out y);
// It's now assigned a value, so we can write it out:
Console.WriteLine (y);

Output:

Parameter arrays

Parameter arrays allow a variable number of arguments to be passed into a function member. The definition of the parameter has to include the params modifier, but the use of the parameter has no such keyword. A parameter array has to come at the end of the list of parameters, and must be a single-dimensional array. When using the function member, any number of parameters (including none) may appear in the invocation, so long as the parameters are each compatible with the type of the parameter array. Alternatively, a single array may be passed, in which case the parameter acts just as a normal value parameter. For example:

void ShowNumbers (params int[] numbers)
{
? ? foreach (int x in numbers)
? ? {
? ? ? ? Console.Write (x+" ");
? ? }
? ? Console.WriteLine();
}
...

int[] x = {1, 2, 3};
ShowNumbers (x);
ShowNumbers (4, 5);

Output:

In the first invocation, the variable x is passed by value, as it's just an array. In the second invocation, a new array of ints is created containing the two values specified, and a reference to this array is passed.

Mini-glossary

Some informal definitions and summaries of terms:

Function member
A function member is a method, property, event, indexer, user-defined operator, instance constructor, static constructor, or destructor.
Output parameter
A parameter very similar to a reference parameter, but with different definite assignment rules.
Reference parameter (pass-by-reference semantics)
A parameter which shares the storage location of the variable used in the function member invocation. As they share the same storage location, they always have the same value (so changing the parameter value changes the invocation variable value).
Reference type
Type where the value of a variable/expression of that type is a reference to an object rather than the object itself.
Storage location
A portion of memory holding the value of a variable.
Value parameter (the default semantics, which are pass-by-value)
A value parameter that has its own storage location, and thus its own value. The initial value is the value of the expression used in the function member invocation.
Value type
Type where the value of a variable/expression of that type is the object data itself.
Variable
Name associated with a storage location and type. (Usually a single variable is associated with a storage location. The exceptions are for reference and output parameters.)

posted on 2006-04-07 19:45 夢在天涯 閱讀(2110) 評論(0)  編輯 收藏 引用 所屬分類: C#/.NET

公告

EMail:itech001#126.com

導航

統計

  • 隨筆 - 461
  • 文章 - 4
  • 評論 - 746
  • 引用 - 0

常用鏈接

隨筆分類

隨筆檔案

收藏夾

Blogs

c#(csharp)

C++(cpp)

Enlish

Forums(bbs)

My self

Often go

Useful Webs

Xml/Uml/html

搜索

  •  

積分與排名

  • 積分 - 1812199
  • 排名 - 5

最新評論

閱讀排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              亚洲欧美日韩精品久久| 99热这里只有成人精品国产| 久久精品视频在线播放| 亚洲欧美久久| 欧美一区亚洲| 久久蜜臀精品av| 欧美成人午夜视频| 欧美私人网站| 国产一区二区在线免费观看 | 欧美1区2区| 亚洲国产成人久久| 9久草视频在线视频精品| 亚洲一二三区精品| 久久精品国产久精国产爱| 欧美激情第五页| 国产精品影音先锋| 亚洲精品视频在线看| 午夜精品视频网站| 亚洲电影在线看| 亚洲欧洲av一区二区| 欧美高清视频免费观看| 国产精品在线看| 99国产欧美久久久精品| 久久男人资源视频| 亚洲精选在线| 麻豆精品网站| 国产午夜精品一区二区三区视频| 亚洲麻豆一区| 欧美成人在线网站| 欧美在线91| 国产精品免费网站| 一区二区日韩精品| 欧美福利视频网站| 性做久久久久久久久| 欧美日韩国产三级| 久久精品中文| 国产精品www.| 日韩一区二区久久| 免费成人av| 欧美中文字幕在线播放| 欧美日韩精品在线播放| 在线观看视频欧美| 久久久久久久久久久成人| 一区二区三区视频观看| 欧美韩国一区| 亚洲精品视频啊美女在线直播| 久久一区二区三区超碰国产精品| 99成人在线| 欧美精品日韩| 99精品国产在热久久| 欧美激情五月| 免费欧美电影| 亚洲激情电影中文字幕| 免费久久精品视频| 久久人人精品| 亚洲国产天堂久久综合| 欧美激情精品久久久久久久变态| 久久精品视频免费播放| 国产有码在线一区二区视频| 欧美影片第一页| 性欧美超级视频| 狠狠色狠狠色综合| 欧美h视频在线| 欧美激情欧美狂野欧美精品| 99视频+国产日韩欧美| 99re6这里只有精品| 欧美性一二三区| 欧美一级淫片播放口| 欧美一区1区三区3区公司| 狠狠色丁香久久婷婷综合_中| 六月天综合网| 欧美精品一卡二卡| 午夜精品理论片| 久久成人精品视频| 亚洲激情婷婷| 夜夜夜久久久| 国产亚洲观看| 欧美激情精品久久久久| 欧美日韩在线观看一区二区三区| 亚洲免费中文| 久久国产66| 99热在这里有精品免费| 亚洲女同在线| 亚洲国产日韩欧美在线动漫| 99国内精品久久| 国产丝袜一区二区三区| 亚洲高清网站| 国产农村妇女毛片精品久久莱园子| 狼人社综合社区| 欧美日韩人人澡狠狠躁视频| 久久精品国产成人| 欧美日韩成人在线播放| 久久se精品一区精品二区| 免费一级欧美在线大片| 性做久久久久久| 蜜臀av在线播放一区二区三区| 亚洲欧美久久| 欧美顶级艳妇交换群宴| 国内一区二区在线视频观看| 亚洲欧洲一区二区在线观看| 国产日韩欧美一区| 99re亚洲国产精品| 亚洲国产日韩欧美综合久久| 性伦欧美刺激片在线观看| 一区二区毛片| 免费在线观看日韩欧美| 久久久精品国产一区二区三区| 欧美日韩国产色综合一二三四 | 国产精品美女视频网站| 欧美aa国产视频| 国产日韩精品一区二区三区在线| 亚洲大片av| 国产综合视频在线观看| 亚洲一区二区三区四区五区午夜 | 亚洲国产美女| 精品动漫一区| 午夜精品在线| 午夜精品久久久久| 欧美色网一区二区| 亚洲精品一二区| 日韩天堂在线观看| 久久中文欧美| 老妇喷水一区二区三区| 国产亚洲综合精品| 亚洲一区二区三区免费观看| 99精品国产一区二区青青牛奶| 老妇喷水一区二区三区| 久热精品视频在线| 韩国精品在线观看| 久久爱另类一区二区小说| 欧美一区二区三区喷汁尤物| 国产精品久久久久久久久久免费看 | 国产亚洲综合精品| 亚洲欧美综合精品久久成人| 午夜精品久久久久久99热软件| 国产精品v片在线观看不卡| 一区二区三区精密机械公司| 亚洲一区二区免费视频| 欧美性色综合| 日韩午夜激情电影| 欧美极品一区二区三区| 日韩一二三在线视频播| 亚洲欧美一区二区三区在线| 国产精品免费视频观看| 香蕉精品999视频一区二区| 久久国产毛片| 在线观看欧美视频| 欧美国产免费| 一区二区日韩欧美| 久久精品一区蜜桃臀影院| 精品成人在线视频| 欧美国产精品人人做人人爱| 亚洲精品女av网站| 亚洲伦理自拍| 国产精品专区h在线观看| 久久国产精彩视频| 亚洲黑丝在线| 性18欧美另类| 亚洲国产精品综合| 99国产精品久久久| 欧美一级视频精品观看| 精品成人在线| 欧美日韩综合不卡| 午夜一级在线看亚洲| 欧美成人黄色小视频| 一区二区三区久久网| 国产视频在线一区二区| 欧美成人国产| 亚洲欧美精品在线观看| 亚洲国产婷婷香蕉久久久久久99| 亚洲欧美国产77777| 亚洲激情国产| 国产毛片一区| 欧美电影免费观看高清| 欧美亚洲三级| 99精品视频免费观看视频| 狂野欧美激情性xxxx欧美| 亚洲视频在线一区| 伊人成人在线| 国产精品成人久久久久| 久久综合九色综合久99| 亚洲一级特黄| 亚洲免费大片| 欧美激情偷拍| 另类av导航| 久久国产免费看| 亚洲永久字幕| 亚洲精品久久久久| 激情欧美国产欧美| 国产欧美精品日韩| 欧美日韩国产成人| 免费人成精品欧美精品| 久久爱www.| 午夜在线播放视频欧美| 一本色道久久综合精品竹菊| 最近看过的日韩成人| 国产亚洲一级| 国产精品夜夜夜| 欧美特黄一区| 欧美日韩一区二区三区在线观看免 |