青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

milkyway的窩

最初想法的誕生地

 

Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0

Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0

 

Introduction

Windows CE uses .bib (binary image builder) files to track, among other things, the memory layout of bootloaders as well as OS images. If you’re writing a new BSP, you’ll definitely need a config.bib file for your OS, and you’ll likely need a boot.bib file for your bootloader.

 

Let’s take a few minutes to understand how .bib files relate to memory usage. It’s going to be muddy at the beginning, but I promise if you stick with me through the end you’ll be glad that you did. Well, maybe you won’t be glad but you’ll know more about .bib files. Let’s get to it!

 

OEMAddressTable

Before we look at the .bib files themselves, it’s important to understand the OEMAddressTable. This table defines the mappings between physical and virtual addresses. For MIPS and SH processors, this table is hard coded into the processor. For x86 and ARM, the mapping is defined in a variable called OEMAddressTable. Since .bib files operate largely on virtual addresses, we need to remember to reference the OEMAddressTable to address any confusion about what is happening at a particular physical address.

 

The table’s layout is quite simple. Each line creates a mapping of virtual addresses to physical addresses. The syntax is: Base virtual address, base physical address, size. Let’s take an example from the Mainstone BSP:

 

DCD     0x80000000, 0xA0000000,  64     ; MAINSTONEII: SDRAM (64MB).

DCD     0x88000000, 0x5C000000,   1     ; BULVERDE: Internal SRAM (64KB bank 0).

DCD     0x88100000, 0x58000000,   1     ; BULVERDE: Internal memory PM registers.

DCD     0x88200000, 0x4C000000,   1     ; BULVERDE: USB host controller.

 

So in the first line, we are mapping the 64MB of RAM at physical address 0xA0000000 to the virtual address 0x80000000. Since 64MB = 0x04000000 this means that the physical addresses 0xA000000-0xA4000000 are now mapped to virtual addresses 0x80000000-0x84000000. Likewise, we’ve mapped the USB host controller which resides at physical addresses 0x4C000000-0x4C100000 to virtual addresses 0x88200000-0x8300000.

 

Inside Windows CE, memory access is virtual by default. So when we access memory at 0x81005000, we’ll be accessing some physical memory in the Mainstone’s 64MB SDRAM bank. If we access memory at 0x88201000, we’ll be accessing the USB host controller, physically. If we access memory at 0x86001000, we’ll get a page fault because this virtual address has no corresponding physical address.

 

Now that we understand the OEMAddressTable, let’s talk about the .bib files.

 

Config.bib – this contains a lot of configuration info for a CE OS image. The MEMORY section is what we’ll focus on – it defines the memory blueprint for the CE image. Here are the important terms:

 

RAMIMAGE – This is the virtual address region that the kernel and any other components you select for your image will be placed in. This can be RAM or linearly addressable flash. Your config.bib file should have exactly one RAMIMAGE section. It needs to be virtually contiguous, and it needs to be large enough to hold whatever components you’ve selected.

 

RAM – This is the virtual address region of RAM that the kernel can allocate to applications and RAM-based file systems. It needs to be virtually contiguous. (If you need a non-contiguous section, you can allocate another, non-virtually-contiguous section at run-time by implementing the OEMGetExtensionDRAM function, but that’s outside our scope)

 

RESERVED – These are virtual address regions that are set aside – the kernel won’t allocate memory in these addresses and components won’t be placed in these addresses.

 

AUTOSIZE - In the CONFIG section, we have the AUTOSIZE=ON (or OFF) variable. If this variable is on, it will treat the RAMIMAGE and RAM regions as a single region, allocating just enough space to hold all of the components to the RAMIMAGE section and making the rest of the space available as RAM. This is a pretty convenient and easy way to make sure you’re getting maximal use out of your RAM. One thing autosize won’t do is interfere with reserved or unallocated regions.

 

Eboot.bib (sometimes known as boot.bib) – this works identically to config.bib, except we’re building a bootloader image as opposed to one with a full kernel. All of the terminology is exactly the same. The only difference is, in the case where we’re not using an MMU in the bootloader (CEPC is an example of these), the addresses will be physical as opposed to virtual. Otherwise, the layout is identical.

 

Bringing it together

In almost all cases, the bootloader and OS use the same OEMAddressTable. Thus, they have the same virtual address space.

 

This is especially useful when it comes to RESERVED regions. Since nothing will be allocated or placed in these addresses, only components that refer directly to the address will have access. That means we can use these regions for special buffers (say, DMA) or passing arguments passed in from the bootloader to the OS. It also means that, if you want, you can leave the bootloader in RAM.

 

Keep in mind that while RESERVED means that we won’t allocate/place components in those virtual addresses, by default if an area isn’t specified in a .bib file then we won’t allocate/place in it. This means RESERVED is really more of a comment then anything. However, it is useful in our .bib files because it helps us identify the location of special buffers and arguments so that we know not to overwrite them in other modules.

 

An Example

Let’s take a look at a simplified example in the CEPC BSP:

Here’s our OEMAddressTable (platform\common\src\x86\common\startup\startup.asm):

_OEMAddressTable:

        dd 80000000h,     0,      04000000h

This means that we’re mapping physical addresses 0x00000000-0x04000000 to virtual addresses 0x80000000-0x84000000. That’s 64MB of RAM.

 

Here’s our boot.bib (platform\CEPC\src\bootloader\eboot\boot.bib):

MEMORY

;   Name     Start     Size      Type

;   ------- -------- -------- ----

    EBOOT    00130000 00020000 RAMIMAGE

    RAM      00150000 00070000 RAM

    ETHDMA   00200000 00020000 RESERVED

 

Remember the CEPC bootloader uses physical addresses. So in virtual address terms, our bootloader code is living at 0x80130000-0x80150000, with RAM available from 0x80150000-0x801C0000. We’re reserving a buffer for our Ethernet card from 0x80200000-0x80220000.

 

And a condensed version of config.bib (platform\CEPC\files\config.bib):

 

MEMORY

;   Name     Start     Size      Type

;   ------- -------- -------- ----

; 64 MB of RAM (note: AUTOSIZE will adjust boundary)

    NK       80220000 009E0000 RAMIMAGE

    RAM      80C00000 03400000 RAM

    DMA      80100000 00030000 RESERVED   ; Native DMA reserved.

    BOOTARGS 801FFF00 00000100 RESERVED   ; Boot arguments

    EDBG_DMA 80200000 00020000 RESERVED   ; EDBG DMA buffer

 

 

There are several interesting things going on here:

 

First, our OS image (NK) starts at 0x80220000, and RAM resides directly above it. That means we’re not allowing any components or allocation to write below 0x80220000, and thus our bootloader code is protected.

 

Second, note that we have also reserved some regions. The EDBG_DMA corresponds to the same addresses that the bootloader reserved. This way we can make a smooth transition from bootloader to kernel without worrying about the contents of this memory being tampered with. 

 

Another region has been reserved from 0x80100000-0x80130000. This is very close to the start of our bootloader. If we reserved even a byte more, we would not expect our bootloader to continue to be executable after we boot the OS. However, since the bootloader’s address space isn’t referenced by any region in config.bib, we know that it will remain untouched by the OS. This way we can jump back to the bootloader code during a warm reset, if desired.

 

We’re not required to keep our bootloader in memory, though. We could easily place the bootloader (in boot.bib) at the end of the RAM space (in config.bib). This way after the image was successfully downloaded we could allocate memory over the top of the bootloader and make full use of all of our system RAM. What you don’t want to do is intersect the bootloader with the RAMIMAGE part of config.bib – this means you’ll overwrite the code you’re running to download, during download!

 

Finally, notice we have a special reserved region called “boot arguments”.  If we at the CEPC’s bootloader we will see that it writes explicitly to the (physical) 0x001FFF00-0x002000000. You’ll also notice this isn’t used anywhere in the boot.bib layout. That means we can be assured it will be untouched (unless, of course, something else in the bootloader writes explicitly to that address range).

 

This is how we pass arguments from the bootloader to the OS – the OS can read directly from 0x801FFF00 and be assured that the kernel won’t tamper with it because it is RESERVED. Technically, we could have indicated that area as RESERVED in the bootloader as well.

 

Hopefully this has given you some insight into .bib memory layouts.

posted on 2007-04-19 11:03 milkyway 閱讀(1489) 評論(1)  編輯 收藏 引用

評論

# re: Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0 2007-04-19 11:04 相思酸中有甜

注意
1。以太網卡DMA在eboot.bib和config.bib的復用;
2。不要在config.bib中覆蓋eboot的IMAGE  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


導航

統計

公告

隨筆皆原創,文章乃轉載. 歡迎留言!

常用鏈接

留言簿(37)

隨筆分類(104)

隨筆檔案(101)

文章分類(51)

文章檔案(53)

wince牛人

搜索

積分與排名

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            午夜精品剧场| 欧美高清在线一区| 午夜亚洲激情| 韩国福利一区| 国产午夜精品理论片a级探花 | 久久精品在线免费观看| 亚洲激情综合| 91久久国产综合久久| 在线观看视频日韩| 精品成人在线视频| 亚洲一区二区在线看| 99精品福利视频| 亚洲午夜精品| 午夜综合激情| 噜噜爱69成人精品| 欧美日韩高清在线播放| 欧美日韩视频在线一区二区 | 欧美激情国产日韩| 日韩一区二区精品葵司在线| 久久精品夜色噜噜亚洲aⅴ| 美女诱惑一区| 国产亚洲欧美在线| 欧美视频免费看| 欧美丰满高潮xxxx喷水动漫| 久久亚洲不卡| 欧美日韩一区二区三区在线看| 国产午夜亚洲精品不卡| 在线精品一区二区| 亚洲人成欧美中文字幕| 国产精品捆绑调教| 国产欧美va欧美va香蕉在| 国产精品视频网| 国内不卡一区二区三区| 亚洲福利视频二区| 性感少妇一区| 亚洲黄色天堂| 夜夜狂射影院欧美极品| 日韩视频国产视频| 欧美亚洲综合久久| 免费看黄裸体一级大秀欧美| 国产精品sm| 久久人人爽爽爽人久久久| 久久久综合网站| 亚洲欧美影音先锋| 久久综合久久综合九色| 欧美成人精品高清在线播放| 欧美午夜视频在线| 亚洲激情影院| 老司机成人网| 欧美一级理论片| 欧美三级电影网| 中文国产成人精品久久一| 久久中文欧美| 欧美影院在线播放| 欧美日韩亚洲一区二| 亚洲最新在线| 亚洲免费观看| 欧美日韩在线电影| 亚洲午夜精品久久| 91久久亚洲| 欧美黄色视屏| 亚洲精品视频免费观看| 亚洲国产91精品在线观看| 欧美成人精品在线播放| 国内精品免费在线观看| 亚洲欧美激情四射在线日| 亚洲国产清纯| 欧美高清在线一区| 亚洲视频在线观看免费| 香蕉久久精品日日躁夜夜躁| 国产主播一区二区三区四区| 午夜亚洲福利| 欧美影院成人| 亚洲欧美精品suv| 牛夜精品久久久久久久99黑人| 亚洲永久网站| 国产精品日韩精品欧美精品| 久久国产精品色婷婷| 欧美精品一区在线发布| 香蕉国产精品偷在线观看不卡| 久久深夜福利免费观看| 亚洲愉拍自拍另类高清精品| 久久大香伊蕉在人线观看热2| 一区二区三区www| 久久手机精品视频| 理论片一区二区在线| 亚洲电影免费在线观看| 免费看黄裸体一级大秀欧美| 亚洲国产经典视频| 亚洲第一福利在线观看| 欧美三级电影网| 久久成人国产精品| 亚洲国产精品精华液网站| 亚洲人屁股眼子交8| 午夜精品久久久久久久久久久| 国产精品美女xx| 亚洲色图在线视频| 亚洲在线视频免费观看| 欧美精品999| 亚洲午夜精品一区二区三区他趣| 一区二区欧美视频| 国产一区二区0| 久久久天天操| 亚洲一区日韩| 亚洲精品中文字幕在线| 久久综合成人精品亚洲另类欧美| 亚洲精品乱码久久久久久久久| 欧美日韩精品一区二区三区四区| 亚洲毛片在线| 激情久久五月| 久久久久久久久久久久久久一区| 久久久亚洲欧洲日产国码αv| 亚洲人www| 91久久在线| 亚洲天天影视| 在线欧美日韩| 老司机精品久久| 亚洲伦理一区| 欧美国产视频日韩| 免费观看久久久4p| 欧美大片在线看免费观看| 午夜精品婷婷| 亚洲天堂av在线免费| 国内精品视频在线播放| 欧美日韩免费在线观看| 久久国产精品第一页| 亚洲精品午夜| 欧美xx视频| 久久国产精品99国产| 亚洲一区欧美激情| 午夜宅男欧美| 久久日韩精品| 亚洲欧洲日夜超级视频| 欧美成人黑人xx视频免费观看| 欧美激情视频在线播放| 亚洲精一区二区三区| 亚洲欧美日韩一区二区| 欧美日韩亚洲系列| 欧美人牲a欧美精品| 欧美日本久久| 国产精品成人一区二区网站软件 | 亚洲视频免费| 欧美在线视频二区| 老司机精品视频一区二区三区| 一卡二卡3卡四卡高清精品视频| 久久国产黑丝| 国产日产欧美a一级在线| 久久永久免费| 久久久精品午夜少妇| 久久午夜精品| 午夜欧美精品久久久久久久| 免费观看久久久4p| 国产精品久久二区二区| 黄色资源网久久资源365| 99国产精品私拍| 久久精品中文字幕免费mv| 欧美高清影院| 亚洲欧美日韩在线高清直播| 免费观看亚洲视频大全| 欧美日韩精品二区| 亚洲福利视频网站| 欧美一区二区三区婷婷月色| 91久久精品国产91久久| 久久久久国内| 国产一区二区三区四区在线观看| 亚洲一区制服诱惑| 一区二区三区欧美在线观看| 欧美激情欧美激情在线五月| 99精品福利视频| 国产精品swag| 久久亚洲图片| 亚洲一二三级电影| 女同一区二区| 亚洲少妇最新在线视频| 欧美视频免费在线| 99这里只有精品| 一区二区91| 国产精品视频一区二区三区| 99国内精品| 亚洲视频你懂的| 国产亚洲欧美日韩美女| 美女尤物久久精品| 欧美成人中文| 欧美在线亚洲| 欧美大片在线观看一区二区| 久久精品30| 国产精品久久久久91| 亚洲欧美日韩在线观看a三区| 日韩性生活视频| 韩国美女久久| 在线亚洲免费视频| 日韩亚洲欧美一区二区三区| 国产精品视频网站| 欧美激情一区二区三区在线| 国产精品久久久久9999高清| 欧美xart系列在线观看| 国产精品久久久一区麻豆最新章节| 牛牛精品成人免费视频| 国产日韩欧美精品| 久久av一区二区三区|