• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            milkyway的窩

            最初想法的誕生地

             

            VirtualAlloc/Copy and MmMapIospace

            Tuesday, March 20, 2007 12:35 PM by Kurt Kennett

            VirtualCopy can be a bit confusing to use.

            http://msdn2.microsoft.com/en-us/library/aa908789.aspx

            Let's look at the parameters.  I've commented with -- after each of them.

            lpvDest

            [in] Pointer to the destination memory, which must be reserved.

            -- This means that the destination range of VIRTUAL memory must already be reserved by a call to VirtualAlloc().  You must have allocated a range of virtual memory that you are going to map to some physical range.

            lpvSrc

            [in] Pointer to committed memory.

            -- This is the range of *either* VIRTUAL *or* PHYSICAL memory that you want to map the range specified by the 'lpvDest' parameter to.  

            If you specify a VIRTUAL address and omit the PAGE_PHYSICAL flag from the fdwProtect parameter, then you are simply saying "Copy the mapping at the lpvSrc address to the lpvDest address".  This just means that there will be two ranges of virtual memory that point to the same physical range.

            If you specify a PHYSICAL address (shifted right 8 bits) and include the PAGE_PHYSICAL flag in the fdwProtect parameter, then you are saying "Map the range at the lpvDest address to this specific physical address".  This sets your new range of virtual memory to point to a piece of physical memory.

            cbSize

            [in] Size, in bytes, of the region. The allocated pages include all pages containing one or more bytes in the range from lpAddress to lpAddress+cbSize. This means that a 2-byte range straddling a page boundary causes both pages to be included in the allocated region.

            -- pretty straight forward here.

            fdwProtect

            [in] Type of access protection. If the pages are being committed, any one of a number of flags can be specified, along with the PAGE_GUARD and PAGE_NOCACHE, protection modifier flags. The following table shows the flags that can be specified.

            -- 'Reserving' a page means you're allocating a range of virtual memory but not pointing it at anything yet.  'Commiting' a page means you are actually taking up physical storage somewhere - be it in RAM or in physical addres space.  For the purposes of our discussion here, you would normally map registers and i/o space with PAGE_NOCACHE.  If you used a physical address (shifted right 8 bits) in the lpvSrc parameter, then you would also specify the PAGE_PHYSICAL flag.


            quetion:

            If I want to access some physical memory in my driver,  can I do like these way?

            Method (1) define static map relationship in OEMAddressTable and reserve difined virtual address in config.bib first, then use VirtualAlloc() and VirtualCopy() without the page_physical parameter.

            or (2)  directly use MmMapIoSpace() or VirtualAlloc+Copy() with the page_physical parameter

            answer:
            Yes, either of those would work I believe.  #2 is the preferred/recommended method


            Monday, March 26, 2007 12:07 PM by Kurt Kennett

            Wow!  Lots of interest in VirtualCopy!  Ok, I'll try to be super-clear here.

            VirtualCopy *copies* or *sets* a range of virtual addresses.  

               - You use it to *copy* an existing Virtual->Physical mapping (no matter where it is).  

            OR

               - You use it to *set* a mapping to a range of physical addresses.

            In *either* case, the virtual memory you want to create the new map in must already be allocated (via VirtualAlloc()).

            OEMAddressTable is a static (unchanging, available at startup without doing any work or setup) table of virtual -> physical mappings.  The kernel is the only thing that has default access to the resources mapped by this table.  If you are operating outside the OAL (i.e. in any kind of driver or application), you must use VirtualCopy() to copy or create memory page mappings.  As mentioned above, you can copy any existing mapping as long as you have access to it.  This includes a static mapping done by the OEMAddressTable.  Some people will map all resources in the OEMAddressTable (so the kernel has access to everything), then just copy those mappings in drivers when they need to.  This is not a best practice because it makes driver code less portable -- it is better to read the physical address of a component from the registry, then use the value found there to map to it. If you do this your driver code does not have to change if it is moved to a different platform or extended to use multiple components in different physical locations.

            A mapping does not have to exist in OEMAddressTable in order for you to access the physical resources mapped.  You can create a new mapping unknown to the OEMAddressTable by using VirtualCopy with the PAGE_PHYSICAL flag.

            MmMapIoSpace is a CEDDK function -- it simply does the appropriate calls to VirtualAlloc/VirtualCopy.  You could write your own MmMapIoSpace if you wanted to.  Some people have in the past - calling the function "VirtualMemCopyPhysical" or something like that.  Some platforms need to modify the MmMapIoSpace to set Virtual mapping attributes when pages are mapped (hence the original purpose for this blog entry).

            Using flags like PAGE_EXECUTE_READWRITE with VirtualCopy are a 'request'.  If the platform/CPU does not have a differentiation between executable pages and non-executable pages, the EXECUTE property will not be able to be set.  For example, the X86 CPUs can explicitly state that memory is executable, but can't be read or written to.  The ARM processors have no notion of this - you can read it or read and write it.



            In Windows CE 5.0 and earlier, virtual allocations below 2MB come out of the address space of the process calling it, while allocations above 2MB come out of the shared address space.

            Sue


            posted on 2007-04-17 13:38 milkyway 閱讀(2907) 評(píng)論(0)  編輯 收藏 引用 所屬分類(lèi): wince(別人的文章技巧總結(jié))

            導(dǎo)航

            統(tǒng)計(jì)

            公告

            隨筆皆原創(chuàng),文章乃轉(zhuǎn)載. 歡迎留言!

            常用鏈接

            留言簿(37)

            隨筆分類(lèi)(104)

            隨筆檔案(101)

            文章分類(lèi)(51)

            文章檔案(53)

            wince牛人

            搜索

            積分與排名

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            伊人久久精品影院| 精品伊人久久大线蕉色首页| 久久水蜜桃亚洲av无码精品麻豆 | 精品永久久福利一区二区| AV无码久久久久不卡网站下载| 老司机国内精品久久久久| 久久久久亚洲AV综合波多野结衣 | 国产精品久久久久久| 国产精品无码久久四虎| 久久亚洲AV无码精品色午夜| 国产精品99久久精品| 偷偷做久久久久网站| 久久综合九色综合97_久久久| 精品久久久久成人码免费动漫 | 久久国产精品一区二区| 久久综合九色综合欧美就去吻| 99久久99这里只有免费费精品| 亚洲精品成人久久久| 88久久精品无码一区二区毛片 | 亚洲午夜无码AV毛片久久| 999久久久无码国产精品| 亚洲精品97久久中文字幕无码| 91精品国产91久久久久久| 亚洲国产精品无码久久| 中文精品99久久国产| 午夜精品久久久久9999高清| 久久国产精品久久| 久久久久国产精品熟女影院| 91麻豆国产精品91久久久| 欧美成a人片免费看久久| 99热精品久久只有精品| 久久久久夜夜夜精品国产| 久久人人爽爽爽人久久久| 久久久久久午夜精品| 久久久久国色AV免费看图片| 51久久夜色精品国产| 国产成人精品久久综合| Xx性欧美肥妇精品久久久久久| 麻豆精品久久久一区二区| 久久婷婷久久一区二区三区| 久久精品国产影库免费看|