• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0
            I have my friends to visit. For some reason, I can only visit some of my friends. So I want see my friends as many as possible. Thus I must choose the longest way. Your goal is to help me developing a program that computes the length of the longest path that can be constructed in a given graph from a given starting point (My residence). You can assume that the graph has no cycles (there is no path from any node to itself), so I will reach my destination in a finite time. In the same line of reasoning, nodes are not considered directly connected to themselves.

            Input

            The input consists of a number of cases. The first line on each case contains a positive number n (1 < n <= 100) that specifies the number of points in the graph. A value of n = 0 indicates the end of the input. After this, a second number s is provided, indicating the starting point in my journey (1 <= s <= n). Then, you are given a list of pairs of places p and q, one pair per line. The pair "p q" indicates that I can visit q after p. A pair of zeros ("0 0") indicates the end of the case. As mentioned before, you can assume that the graphs provided will not be cyclic.

            Output

            For each test case you have to find the length of the longest path that begins at the starting place. You also have to print the number of the final place of such longest path. If there are several paths of maximum length, print the final place with smallest number.

            Print a new line after each test case.

            Sample Input

            2
            1
            1 2
            0 0
            5
            3
            1 2
            3 5
            3 1
            2 4
            4 5
            0 0
            5
            5
            5 1
            5 2
            5 3
            5 4
            4 1
            4 2
            0 0
            0
            

            Sample Output

            Case 1: The longest path from 1 has length 1, finishing at 2.
            Case 2: The longest path from 3 has length 4, finishing at 5.
            Case 3: The longest path from 5 has length 2, finishing at 1.
            提交了10次,AC 3次,超時4次,wa 3次。
            很無語。
            應該是動態規劃最好,但是我不是很熟,用了搜索。以下是超時的代碼
            #include<iostream>
            #include<cstdlib>
            using namespace std;
            int path[101][101];
            int mark[101];
            int len[101];//
            int end[101];
            int dfs(int start,int num)//返回從當前點出發的最大長度
            {
            if(mark[start]==1)return len[start];
            mark[start]=1;
            end[start]=start;
            for(int i=1;i<=num;i++)
            {
            if(path[start][i])
            {
            if(len[start]<dfs(i,num)+1)
            {
            len[start]=len[i]+1;
            end[start]=end[i];
            }
            else
            if(len[start]==len[i]+1&&end[start]>end[i])
            end[start]=end[i];
            }
            }
            mark[start]=0;//這句堅決不需要 
            return len[start];
            }
            int main()
            {
            // freopen("s.txt","r",stdin);
            //freopen("key.txt","w",stdout);
            int j,k,turn=0;
            int start,num;
            while(cin>>num)
            {
            turn++;
            if(num==0)break;
            memset(path,0,sizeof(path));
            memset(mark,0,sizeof(mark));
            memset(len,0,sizeof(len));
            memset(end,0,sizeof(end));
            cin>>start;
            while(cin>>j>>k)
            {
            if(j==0)break;
            path[j][k]=1;
            }
            cout<<"Case "<<turn<<": The longest path from "<<start<<" has length "<<dfs(start,num)<<", finishing at "<<end[start]<<"."<<endl<<endl;
            }
            //system("PAUSE");
            return   0;
            }
            以下是ac的代碼
            #include<iostream>
            #include<cstdlib>
            using namespace std;
            int path[102][102];
            int mark[102], len[102],end[102];
            int dfs(int start,int num)//返回從當前點出發的最大長度
            {
            if(mark[start]==1)return len[start];
            mark[start]=1;
            end[start]=start;
            len[start]=0;
            int i,t;
            for( i=1;i<=num;i++)
            {
            if(path[start][i])
            {
            t=dfs(i,num)+1;
            if(t>len[start])
            {
            len[start]=t;
            end[start]=end[i];
            }
            else
            if(len[start]==t)
            {
            if(end[start]>end[i])
            end[start]=end[i];
            }
            }
            }
            return len[start];
            }
            int main()
            {
            //freopen("s.txt","r",stdin);
            //freopen("key.txt","w",stdout);
            int j,k,turn=0;
            int start,num;
            while(cin>>num,num)
            {
            turn++;
            memset(path,0,sizeof(path));
            memset(mark,0,sizeof(mark));
            memset(len,0,sizeof(len));
            memset(end,0,sizeof(end));
            cin>>start;
            while(cin>>j>>k,j||k)
            {
            path[j][k]=1;
            }
            dfs(start,num);
            cout<<"Case "<<turn<<": The longest path from "<<start<<" has length "<<len[start]<<", finishing at "<<end[start]<<"."<<endl<<endl;
            }
            //system("PAUSE");
            return   0;
            }
            不妨執行一下
            5
            3
            1 2
            3 5
            3 1
            2 4
            4 5
            0 0
            先是len[3]=0;end[3]=3;flag[3]=1;
            再執行t=dfs(1)+1,
            轉入dfs(1);len[1]=0;end[1]=1;flag[1]=1;
            再執行t=dfs(2)+1;
            轉入dfs(2),len[2]=0;end[2]=2;flag[2]=1;
            再執行t=dfs(4)+1
            轉入dfs(4),len[4]=0;end[4]=4;flag[4]=1;
            再轉入t=dfs(5)+1;
            轉入dfs(5),len[5]=0;end[5]=5;flag[5]=1;return(len[5]=0);
            則t=1;t>len[4];len[4]=1;end[4]=end[5]=5;再看4沒了其他相鄰元素。dfs(4)=return(len[4])=1;
            t=dfs(4)+1=2;len[2]=t=2;end[2]=end[4]=5;再看2沒了其他相鄰元素,dfs(2)=return(len(2)=2;
            再看t=dfs(2)+1=3;len[1]=t=3;end[1]=en[2]=5;再看1有沒有其他相鄰元素,dfs(1)=return(len(1)=3
            再執行t=dfs(1)+1,len[3]=4;end[3]=end[1]=5;再看3有沒有其他相鄰元素,有dfs(5),已經遍歷到了,所以dfs(5)return len【5】。
            沒有影響。
            假設改為
            5 3 5 2 3 5 3 1 2 4 4 1 0 0 執行時會走3->1>這時的1結點len[1]已經求的 3>5>2>4>1len[1]已知了
            posted on 2009-06-29 16:13 luis 閱讀(273) 評論(0)  編輯 收藏 引用 所屬分類: 搜索給我啟發題
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品极品盛宴观看| 国产成人精品免费久久久久| 国产精品久久久久一区二区三区 | 思思久久99热只有频精品66| 欧美午夜A∨大片久久| 久久亚洲精精品中文字幕| 色综合色天天久久婷婷基地| 亚州日韩精品专区久久久| 久久国产亚洲精品无码| 精品久久国产一区二区三区香蕉| 久久国产精品无| 久久91精品国产91久久小草| 香蕉久久夜色精品国产2020| 久久精品国产亚洲一区二区| yy6080久久| 久久精品无码专区免费| 久久久精品一区二区三区| 亚洲乱码精品久久久久..| 国产精品欧美久久久久天天影视| 伊人久久大香线蕉亚洲| 久久中文字幕视频、最近更新| 国产精品久久久久AV福利动漫| 免费无码国产欧美久久18| 精品国产青草久久久久福利| 久久久久久亚洲Av无码精品专口| 亚洲午夜福利精品久久| 九九久久精品无码专区| 日本精品久久久久中文字幕8| 久久久久人妻精品一区二区三区| 久久久久久伊人高潮影院| 久久国产精品波多野结衣AV| 一级做a爰片久久毛片人呢| 国产亚洲精品自在久久| 精品久久久久久久无码| 久久久久AV综合网成人| 久久亚洲精精品中文字幕| 狠狠色丁香久久婷婷综合五月| 久久国产精品77777| 午夜久久久久久禁播电影| 欧美一区二区三区久久综| 久久午夜伦鲁片免费无码|