• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            alpc60 ACM/ICPC程序設計
            成長的路……源
            posts - 20,comments - 42,trackbacks - 0
             

            Taxi Cab Scheme

            Time Limit: 1000MS

             

            Memory Limit: 30000K

            Total Submissions: 1342

             

            Accepted: 587

            Description

            Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.
            For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride's scheduled departure. Note that some rides may end after midnight.

            Input

            On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.

            Output

            For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.

            Sample Input

            2
            2
            08:00 10 11 9 16
            08:07 9 16 10 11
            2
            08:00 10 11 9 16
            08:06 9 16 10 11

            Sample Output

            1
            2

            Source

            Northwestern Europe 2004

             

             

                   根據這道題目的意思,我們可以建一張圖,對于兩個booked taxi riderirj如果一輛車能夠先完成ri的任務再有時間趕去完成rj的任務,那么就建立一條ri指向rj的邊。

                   按照題目的要求,要選擇最少的taxi來完成這些任務。顯然在上面這個例子中,需要安排2taxi。結合這個圖,可以把題目的要求轉化為找出最少的路徑條數,使得這些路徑覆蓋途中所有的邊,例如可以選擇2條路徑1->3->41->2就可以覆蓋所有的邊。也可以選擇1->3->42(因為2作為初始站,不需要由1轉移過來)。對于一條連續的路徑vi1->vi2->…vik由于這條路徑上的任務實際上是由一輛taxi來完成的,可以吧這條路徑退化成兩個點vi1->vik。有了這兩步建圖的步驟以后,問題的求解就可以變為找出頂點集的一個最小子集,使這個頂點子集覆蓋所有的邊(每條邊都至少和一個頂點集的頂點相連)。這個問題就是圖的最小點覆蓋。再看這張圖,還有一些性質能夠讓我們更好地求出最小點覆蓋。這個圖是一個有向無環圖,沒有自環,就可以拆點,把原先建的圖變成一張二分圖。

            可以再圖中看出,上面舉出的一條路徑1->3->4對應了這個二分圖中的路徑1->3’->3->4’,在這個二分圖中就需要求一個最大獨立子集(這里的4點就是一條路徑的終點,沒一條路徑即對應有一個終點!)。二分圖的最大獨立數是總點數與最大匹配數的差值。接下來建圖,拆點,求二分圖最大匹配就能解決這道題目了。


            posted on 2008-09-15 19:46 飛飛 閱讀(1829) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC
            91麻豆国产精品91久久久| 韩国三级大全久久网站| 久久精品极品盛宴观看| 香蕉久久夜色精品升级完成| 久久国产亚洲精品麻豆| 日本国产精品久久| 日韩精品久久无码中文字幕| 国产精品伦理久久久久久| 亚洲国产成人久久一区久久| 久久精品中文无码资源站| 久久亚洲精品无码播放| 久久99精品国产自在现线小黄鸭| 久久这里只有精品视频99| 久久发布国产伦子伦精品 | 狠狠色丁香久久婷婷综合五月| 久久青青草原精品影院| 欧美大香线蕉线伊人久久| 无码乱码观看精品久久| 色成年激情久久综合| 欧美亚洲色综久久精品国产| 日日狠狠久久偷偷色综合0| 办公室久久精品| 国产精品久久久久影院色| 久久精品亚洲一区二区三区浴池| 中文字幕亚洲综合久久菠萝蜜| 四虎国产永久免费久久| 国产精品一区二区久久| 亚洲精品tv久久久久久久久 | 国产精品美女久久久久网| 午夜久久久久久禁播电影| 思思久久99热免费精品6| 欧美日韩精品久久久免费观看| 色综合久久中文综合网| 久久综合九色综合久99| 一本大道久久a久久精品综合| 69久久精品无码一区二区| 99久久99这里只有免费费精品| 久久精品无码午夜福利理论片| 精品少妇人妻av无码久久| 99精品国产在热久久无毒不卡 | 伊人色综合久久|