• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Using memset(), memcpy(), and memmove() in C

            The article is from http://www.java-samples.com/showtutorial.php?tutorialid=591

            To set all the bytes in a block of memory to a particular value, use memset(). The function prototype is

            void * memset(void *dest, int c, size_t count);
            

            The argument dest points to the block of memory. c is the value to set, and count is the number of bytes, starting at dest, to be set. Note that while c is a type int, it is treated as a type char. In other words, only the low-order byte is used, and you can specify values of c only in the range 0 through 255.

            Use memset() to initialize a block of memory to a specified value. Because this function can use only a type char as the initialization value, it is not useful for working with blocks of data types other than type char, except when you want to initialize to 0. In other words, it wouldn't be efficient to use memset() to initialize an array of type int to the value 99, but you could initialize all array elements to the value 0. memset() will be demonstrated in program below.

            The memcpy() Function

            memcpy() copies bytes of data between memory blocks, sometimes called buffers. This function doesn't care about the type of data being copied--it simply makes an exact byte-for-byte copy. The function prototype is

            void *memcpy(void *dest, void *src, size_t count);
            

            The arguments dest and src point to the destination and source memory blocks, respectively. count specifies the number of bytes to be copied. The return value is dest. If the two blocks of memory overlap, the function might not operate properly--some of the data in src might be overwritten before being copied. Use the memmove() function, discussed next, to handle overlapping memory blocks. memcpy() will be demonstrated in program below.

            The memmove() Function

            memmove() is very much like memcpy(), copying a specified number of bytes from one memory block to another. It's more flexible, however, because it can handle overlapping memory blocks properly. Because memmove() can do everything memcpy() can do with the added flexibility of dealing with overlapping blocks, you rarely, if ever, should have a reason to use memcpy(). The prototype is

            void *memmove(void *dest, void *src, size_t count);
            

            dest and src point to the destination and source memory blocks, and count specifies the number of bytes to be copied. The return value is dest. If the blocks overlap, this function ensures that the source data in the overlapped region is copied before being overwritten. Sample program below demonstrates memset(), memcpy(), and memmove().

            A demonstration of memset(), memcpy(), and memmove().

            1: /* Demonstrating memset(), memcpy(), and memmove(). */
            2:
            3: #include <stdio.h>
            4: #include <string.h>
            4:
            5: char message1[60] = "Four score and seven years ago ...";
            6: char message2[60] = "abcdefghijklmnopqrstuvwxyz";
            7: char temp[60];
            8:
            9: main()
            10: {
            11:    printf("\nmessage1[] before memset():\t%s", message1);
            12:    memset(message1 + 5, `@', 10);
            13:    printf("\nmessage1[] after memset():\t%s", message1);
            14:
            15:    strcpy(temp, message2);
            16:    printf("\n\nOriginal message: %s", temp);
            17:    memcpy(temp + 4, temp + 16, 10);
            18:    printf("\nAfter memcpy() without overlap:\t%s", temp);
            19:    strcpy(temp, message2);
            20:    memcpy(temp + 6, temp + 4, 10);
            21:    printf("\nAfter memcpy() with overlap:\t%s", temp);
            22:
            23:    strcpy(temp, message2);
            24:    printf("\n\nOriginal message: %s", temp);
            25:    memmove(temp + 4, temp + 16, 10);
            26:    printf("\nAfter memmove() without overlap:\t%s", temp);
            27:    strcpy(temp, message2);
            28:    memmove(temp + 6, temp + 4, 10);
            29:    printf("\nAfter memmove() with overlap:\t%s\n", temp);
            30:
            31: }
            message1[] before memset():     Four score and seven years ago ...
            message1[] after memset():      Four @@@@@@@@@@seven years ago ...
            Original message: abcdefghijklmnopqrstuvwxyz
            After memcpy() without overlap: abcdqrstuvwxyzopqrstuvwxyz
            After memcpy() with overlap:    abcdefefefefefefqrstuvwxyz
            Original message: abcdefghijklmnopqrstuvwxyz
            After memmove() without overlap:        abcdqrstuvwxyzopqrstuvwxyz
            After memmove() with overlap:   abcdefefghijklmnqrstuvwxyz
            

            ANALYSIS: The operation of memset() is straightforward. Note how the pointer notation message1 + 5 is used to specify that memset() is to start setting characters at the sixth character in message1[] (remember, arrays are zero-based). As a result, the 6th through 15th characters in message1[] have been changed to @.

            When source and destination do not overlap, memcpy() works fine. The 10 characters of temp[] starting at position 17 (the letters q through z) have been copied to positions 5 though 14, where the letters e though n were originally located. If, however, the source and destination overlap, things are different. When the function tries to copy 10 characters starting at position 4 to position 6, an overlap of 8 positions occurs. You might expect the letters e through n to be copied over the letters g through p. Instead, the letters e and f are repeated five times.

            If there's no overlap, memmove() works just like memcpy(). With overlap, however, memmove() copies the original source characters to the destination.

            posted on 2010-08-31 11:06 lhking 閱讀(552) 評論(0)  編輯 收藏 引用

            導航

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統計

            常用鏈接

            留言簿

            隨筆檔案

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲国产成人久久综合野外| 久久精品国产亚洲AV嫖农村妇女 | 久久精品国产一区二区三区| 久久综合狠狠综合久久97色| 久久久久亚洲Av无码专| 精品久久久久久无码中文野结衣| 久久99国产精品久久99小说| 久久国产精品-国产精品| 久久久久久精品无码人妻| 伊人久久大香线蕉精品| 色欲综合久久躁天天躁蜜桃| 久久久久女教师免费一区| 韩国三级大全久久网站| 人妻少妇久久中文字幕| 国产精品中文久久久久久久| 久久精品亚洲福利| 国产精品99久久不卡| 精品久久久久久亚洲精品| 色偷偷久久一区二区三区| 久久久久青草线蕉综合超碰| 久久影院午夜理论片无码| 国产AV影片久久久久久| 婷婷综合久久中文字幕| 久久亚洲国产欧洲精品一| 99久久成人国产精品免费| 婷婷综合久久中文字幕蜜桃三电影| 日韩亚洲国产综合久久久| 久久国产综合精品五月天| 久久九九久精品国产免费直播| 国产精品欧美久久久久无广告| 国内精品久久久久国产盗摄| 亚洲狠狠综合久久| 国产成人精品久久| 久久夜色撩人精品国产| 性欧美大战久久久久久久| 婷婷国产天堂久久综合五月| 色综合久久夜色精品国产| 成人久久免费网站| 精品免费久久久久久久| 久久这里只有精品久久| 久久免费观看视频|