• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            2012sdACM省賽 題目H

            http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2414


            An interesting game

            Time Limit: 2000MS Memory limit: 65536K

            題目描述

            Xiao Ming recently designs a little game, in front of player there are N small hillsides put in order, now Xiao Ming wants to increase some hillsides to block the player, so he prepared another M hillsides, but he does not hope it will be too difficult,so only K in M hillsides are selected to add at most. Paying attention to the original N hillsides, between each two can add only one hillside. Xiao Ming expects players from the starting place to reach the destination in turn and passes all the hillsides to make his distance travelled longest. Please help Xiao Ming how to add the hillsides that he prepared. Note: The distance between two hillsides is the absolute value of their height difference.

            輸入

            The first line of input is T, (1 <= T <= 100) the number of test cases. Each test case starts with three integers N,M,K (2 <= N <= 1000, 1 <= M <= 1000, 1 <= K <= M and 1 <= K < N), which means that the number of original hillsides, the number of hillsides Xiao Ming prepared and The number of most Xiao Ming can choose from he prepared. Then follow two lines, the first line contains N integers Xi (0 <= Xi <= 30), denoting the height of each original hillside, Note: The first integer is player's starting place and the last integer is player's destination. The second line contains M integers Yi (0 <= Yi <= 30), denoting the height of prepared each hillsides.

            輸出

            For every test case, you should output "Case k: " first in a single line, where k indicates the case number and starts from 1. Then print the distance player can travel longest.

            示例輸入

            3 2 1 1 6 9 8 2 1 1 6 9 15 3 2 1 5 9 15 21 22 

            示例輸出

            Case 1: 3 Case 2: 15 Case 3: 36 

            提示

             

            來源

             2012年"浪潮杯"山東省第三屆ACM大學(xué)生程序設(shè)計(jì)競賽

            示例程序


            比賽的時(shí)候沒有往圖這方面考慮

            比賽結(jié)束后發(fā)現(xiàn)是匹配問題,然后就從這開始,一直悲劇了

            這個(gè)題目我寫了兩種解法

            1,構(gòu)造二分圖,求二分圖的最大權(quán)匹配,然后貪掉小的邊,復(fù)雜度 (n^3)超時(shí)
            2,最大費(fèi)用可行流,加一條限制邊,變?yōu)樽钚≠M(fèi)用流問題

            兩個(gè)模型不寫了,這幾天搞這個(gè)題無力了
            貼下代碼,小小的參考了下段神的代碼,
            本來寫的是鄰接矩陣的,結(jié)果無奈到死,一直改不出來,我想是不是那個(gè)沒法處理負(fù)權(quán)邊呢?我也不知道 是不是
            然后就改成了鄰接表的
            代碼1 KM
            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #include
            <algorithm>
            #define pp printf("here\n")
            #define maxn 1005
            #define inf 0xfffffff
            using namespace std;
            int map[maxn][maxn],w[maxn][maxn],f[maxn],a[maxn];
            int b[maxn],x[maxn],y[maxn],pre[maxn];
            bool visx[maxn],visy[maxn];
            int n,m,k,num;
            int ans,slack;
            int count1=0;
            int lx[maxn],ly[maxn];
            int maty[maxn],matx[maxn];
            int fx[maxn],fy[maxn];
            int nx,ny;
            struct node
            {
                
            int u,val;
            } edge[maxn];
            int abs1(int x)
            {
                
            if(x<0return -x;
                
            else return x;
            }
            int cmp(node t1,node t2)
            {
                
            return t1.val<t2.val;
            }
            int path(int u)
            {
                fx[u] 
            = 1;
                
            for (int v = 1; v <= ny; v++)
                    
            if (lx[u] + ly[v] == w[u][v] && fy[v] < 0)
                    {
                        fy[v] 
            = 1;
                        
            if (maty[v] < 0 || path(maty[v]))
                        {
                            matx[u] 
            = v;
                            maty[v] 
            = u;
                            
            return 1;
                        }
                    }
                
            return 0;
            }
            int km()
            {
                
            int i,j,k,ret = 0;
                memset(ly, 
            0sizeof(ly));
                
            for (i = 1; i <= nx; i++)
                {
                    lx[i] 
            = -inf;
                    
            for (j = 1; j <= ny; j++)
                        
            if (w[i][j] > lx[i]) lx[i] = w[i][j];
                }
                memset(matx, 
            -1sizeof(matx));
                memset(maty, 
            -1sizeof(maty));
                
            for (i = 1; i <= nx; i++)
                {
                    memset(fx, 
            -1sizeof(fx));
                    memset(fy, 
            -1sizeof(fy));
                    
            if (!path(i))
                    {
                        i
            --;
                        
            int p = inf;
                        
            for (k = 1; k <= nx; k++)
                        {
                            
            if (fx[k] > 0)
                                
            for (j = 1; j <= ny; j++)
                                    
            if (fy[j] < 0 && lx[k] + ly[j] - w[k][j] < p)
                                        p
            =lx[k]+ly[j]-w[k][j];
                        }
                        
            for (j = 1; j <= ny; j++)
                            ly[j] 
            += fy[j]<0 ? 0 : p;
                        
            for (j = 1; j <= nx; j++)
                            lx[j] 
            -= fx[j]<0 ? 0 : p;
                    }
                }
            }
            void work()
            {
                
            int i,j;
                num
            =0;
                
            for(i=1; i<=m; i++)
                {
                    edge[num].u
            =pre[i];
                    edge[num].val
            =map[maty[i]][i];
                    ans
            +=edge[num].val;
                    num
            ++;
                }
                sort(edge,edge
            +num,cmp);
                
            //for(i=0;i<num;i++)
                    
            //printf("%d ",edge[i].val);printf("\n");
                
            //for(i=0;i<num;i++) printf("%d  %d\n",edge[i].u,edge[i].val);
                for(i=0; i<m-k; i++)
                    ans
            =ans-edge[i].val;
            }
            int main()
            {
                
            int times,t,i,j,w;
                scanf(
            "%d",&t);
                
            for(times=1; times<=t; times++)
                {
                    scanf(
            "%d%d%d",&n,&m,&k);
                    memset(a,
            0,sizeof(a));
                    memset(map,
            0,sizeof(map));
                    memset(f,
            0,sizeof(f));
                    ans
            =0;
                    
            for(i=1; i<=n; i++)
                    {
                        scanf(
            "%d",&a[i]);
                        
            if(i!=1)
                        {
                            f[i
            -1]=abs1(a[i]-a[i-1]);
                            ans
            +=f[i-1];
                        }
                    }
                    
            for(i=1; i<=m; i++) scanf("%d",&b[i]);
                    
            //printf("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n");
                    for(i=1; i<=n-1; i++)
                        
            for(j=1; j<=m; j++)
                        {
                            w
            =abs1(a[i]-b[j])+abs1(a[i+1]-b[j])-f[i];
                            map[i][j]
            =w;
                            
            //printf("%d %d %d\n",i,j,w);
                        }
                    
            //printf("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n");
                    nx=n-1;
                    ny
            =m;
                    km();
                    work();
                    printf(
            "Case %d: %d\n",times,ans);
                }
                
            return 0;
            }

            2 最小費(fèi)用流,(最小費(fèi)用路的做法,spfa+mincost)
            #include<cstdio>
            #include
            <cstring>
            #define maxn 1500
            #define maxm 150000
            #define inf 0x7fffffff
            int h[maxn],a[50],f[maxn];
            int n,m,k,s,t;
            int sum,ans,nn;
            bool vis[maxn];
            bool mmm;
            int pre[maxn];
            struct node 
            {
                
            int v,next,cap,cost;
            }edge[maxm
            +1];
            int head[maxn],num;
            void add(int u,int v,int cap,int cost)
            {
                edge[num].v
            =v;
                edge[num].cap
            =cap;
                edge[num].cost
            =cost;
                edge[num].next
            =head[u];
                head[u]
            =num++;
                edge[num].v
            =u;
                edge[num].cap
            =0;
                edge[num].cost
            =-cost;
                edge[num].next
            =head[v];
                head[v]
            =num++;
            }
            int abs(int x)
            {
                
            if(x<0return -x;
                
            return x;
            }
            int min(int a,int b)
            {
                
            return a<b?a:b;
            }
            bool spfa()
            {
                
            int q[maxm+1],head1,tail,dist[maxn],i;
                memset(dist,
            0x6f,sizeof(dist));
                memset(vis,
            0,sizeof(vis));
                head1
            =0;tail=1;
                q[tail]
            =s;
                vis[s]
            =1;
                dist[s]
            =0;
                
            while(head1!=tail)
                {
                    head1
            =head1%maxm+1;
                    
            int u=q[head1];
                    
            for(i=head[u];i!=-1;i=edge[i].next)
                    {
                        
            int v=edge[i].v;
                        
            if(dist[v]>dist[u]+edge[i].cost&&edge[i].cap>0)
                        {
                            dist[v]
            =dist[u]+edge[i].cost;
                            pre[v]
            =i;
                            
            if(!vis[v])
                            {
                                tail
            =tail%maxm+1;
                                q[tail]
            =v;
                                vis[v]
            =1;
                            }
                        }
                    }
                    vis[u]
            =1;
                }
                
            if(dist[t]<0return true;
                
            else return false;
            }
            void mincost()
            {
                
            int i;
                i
            =t;
                
            while(i!=s)
                {
                    ans
            +=edge[pre[i]].cost;
                    edge[pre[i]].cap
            --;
                    
            if(edge[pre[i]].cap==0) mmm=true;
                    edge[pre[i]
            ^1].cap++;
                    
            if(edge[pre[i]^1].cap==1) mmm=true;
                    i
            =edge[pre[i]^1].v;
                }
            }
            void work()
            {
                ans
            =0;
                mmm
            =true;
                
            while(!mmm||spfa())
                {
                    mmm
            =false;
                    mincost();
                }
                sum
            =sum-ans;
            }
            int main()
            {
                
            int times,i,j,t1,x;
                scanf(
            "%d",&t1);
                
            for(times=1; times<=t1; times++)
                {
                    scanf(
            "%d%d%d",&n,&m,&k);
                    sum
            =0;
                    
            for(i=1; i<=n; i++)
                    {
                        scanf(
            "%d",&h[i]);
                        
            if(i!=1)
                        {
                            f[i
            -1]=abs(h[i]-h[i-1]);
                            sum
            =sum+f[i-1];
                        }
                    }
                    memset(a,
            0,sizeof(a));
                    
            for(i=1; i<=m; i++)
                    {
                        scanf(
            "%d",&x);
                        a[x]
            ++;
                    }
                    s
            =0;
                    nn
            =33+n;
                    
            //源匯2個(gè),k限制1個(gè),附加節(jié)點(diǎn)31(0-30),兩相鄰h的合并頂點(diǎn)n-1 總共33+n個(gè)節(jié)點(diǎn)
                    t=32+n;
                    
            //////構(gòu)圖
                    num=0;
                    memset(head,
            -1,sizeof(head));
                    add(
            0,1,k,0);
                    
            for(i=0; i<=30; i++)
                    {
                        add(
            1,i+2,a[i],0);
                    }
                    
            for(i=0; i<=30; i++)
                        
            if(a[i]!=0)
                            
            for(j=1; j<=n-1; j++)
                                
            if(f[j]<(abs(h[j]-i)+abs(h[j+1]-i)))
                                {
                                    
            int ww=f[j]-(abs(h[j]-i)+abs(h[j+1]-i));//設(shè)為負(fù)權(quán),求最小費(fèi)用流
                                    add(i+2,j+32,1,ww);
                                }
                    
            for(i=1; i<=n-1; i++)
                    {
                        add(i
            +32,t,1,0);
                    }
                    work();
                    printf(
            "Case %d: %d\n",times,sum);
                }
                
            return 0;
            }

            posted on 2012-05-17 17:16 jh818012 閱讀(180) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當(dāng)于是 取余3的意思 因?yàn)?3 的 二進(jìn)制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點(diǎn)擊標(biāo)題查看
            • --王私江
            亚洲午夜无码AV毛片久久| 久久香蕉超碰97国产精品| 91精品国产9l久久久久| 无码人妻久久久一区二区三区| 亚洲伊人久久大香线蕉综合图片| 久久夜色精品国产欧美乱| 久久成人精品视频| 日本国产精品久久| 久久久久人妻精品一区| 狠狠精品久久久无码中文字幕| 欧美日韩成人精品久久久免费看| 精品久久亚洲中文无码| 热久久这里只有精品| 久久亚洲中文字幕精品一区| 久久精品国产亚洲av水果派| 久久久久国产一区二区| 77777亚洲午夜久久多喷| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久亚洲欧美日本精品| 久久最新免费视频| 无码日韩人妻精品久久蜜桃| 国产L精品国产亚洲区久久| 久久久久久伊人高潮影院| 国产精品美女久久久久AV福利| 国内精品久久久久影院薰衣草 | 热re99久久6国产精品免费| 青青热久久综合网伊人| 偷偷做久久久久网站| 免费一级欧美大片久久网| 国产精品久久久福利| 亚洲国产精品一区二区久久hs| 久久精品亚洲欧美日韩久久| 精品久久久久久中文字幕| 亚洲乱码中文字幕久久孕妇黑人| 久久婷婷五月综合成人D啪| 国产99久久精品一区二区| 久久夜色精品国产噜噜噜亚洲AV | 亚洲日本久久久午夜精品| 国产2021久久精品| 国产精品久久久久久| 久久久久久毛片免费播放|