• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1459

            Power Network

            Time Limit: 2000MS Memory Limit: 32768K
            Total Submissions: 16422 Accepted: 8712

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
                     (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
                     (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.


            哎,糾結死了,我對網絡流這方面理解的還不行

            如果自己寫代碼的話還是有點難度,所以找個好的模版還是很重要的

            額,模版也比較糾結,好多中算法

            找了個比較簡單的算法 Edmonds_karp 

            時間復雜度為O(V*E^2)

            Edmonds-Karp算法就是利用寬度優先不斷地找一條從s到t的可改進路,然后改進流量,一直到找不到可改進路為止。

            由于用寬度優先,每次找到的可改進路是最短的可改進路,通過分析可以知道其復雜度為O(VE^2)。

            代碼好丑
              1#include<stdio.h>
              2#include<string.h>
              3#include<math.h>
              4#define MAX 105
              5int map[MAX][MAX],flow[MAX][MAX],c[MAX][MAX];
              6int n,nc,np,nt,s,t;
              7int sum;
              8int min(int a,int b)
              9{
             10    if (a<b) return a;else return b;
             11}

             12void Edmonds_Karp()
             13{
             14    int l1[MAX],l2[MAX],q[MAX];
             15    int u,v,head,tail;
             16    do 
             17    {
             18        memset(l1,0,sizeof(l1));
             19        memset(l2,0,sizeof(l2));//初始化所有標號為0
             20        l1[s]=0;l2[s]=0x7fffffff;
             21        head=0;tail=1;
             22        q[tail]=s;
             23        while (head<tail&&l2[t]==0)//q未空且匯點未標號
             24        {
             25            head++;
             26            u=q[head];
             27            for (v=1;v<=n ;v++ )
             28            {
             29                if (flow[u][v]<c[u][v]&&l2[v]==0)//未標號且有可行流
             30                {
             31                    tail++;
             32                    q[tail]=v;
             33                    l2[v]=min(c[u][v]-flow[u][v],l2[u]);
             34                    //l2[v]記錄s到v增廣路中最小的可改進流
             35                    l1[v]=u;//記錄前驅
             36                }

             37            }

             38        }

             39        if (l2[t]>0)//匯點未標號
             40        {
             41            v=t;
             42            u=l1[v];
             43            while (v!=s)
             44            {
             45                flow[u][v]+=l2[t];
             46                flow[v][u]=-flow[u][v];
             47                v=u;
             48                u=l1[v];
             49            }

             50        }

             51    }

             52    while (l2[t]!=0);//直到匯點未標號
             53}

             54void init()
             55{
             56    int i,j,a,b,w,x;
             57    char ch1;
             58    s=1;t=n+2;
             59    memset(map,0,sizeof(map));
             60    for (i=1;i<=nt ;i++ )
             61    {
             62        scanf("%c",&ch1);
             63        while (ch1!='(')
             64        {
             65            scanf("%c",&ch1);
             66        }

             67        scanf("%d",&a);a=a+2;
             68        scanf("%c",&ch1);scanf("%d",&b);b=b+2;
             69        scanf("%c",&ch1);scanf("%d",&w);
             70        map[a][b]=w;
             71    }

             72    for (i=1;i<=np ;i++ )
             73    {
             74        scanf("%c",&ch1);
             75        while (ch1!='(')
             76        {
             77            scanf("%c",&ch1);
             78        }

             79        scanf("%d",&a);a=a+2;
             80        scanf("%c",&ch1);scanf("%d",&w);
             81        map[s][a]=w;//map[a][s]=-w;
             82    }

             83    for (i=1;i<=nc ;i++ )
             84    {
             85        scanf("%c",&ch1);
             86        while (ch1!='(')
             87        {
             88            scanf("%c",&ch1);
             89        }

             90        scanf("%d",&a);a=a+2;
             91        scanf("%c",&ch1);scanf("%d",&w);
             92        map[a][t]=w;//map[t][a]=-w;
             93    }

             94    n=n+2;
             95    /*/for (i=1;i<=n ;i++ )
             96    {
             97        for (j=1;j<=n;j++ )
             98        {
             99            printf("%d ",map[i][j]);
            100        }
            101        printf("\n");
            102    }*/

            103    for (i=1;i<=n ;i++ )
            104    {
            105        for (j=1;j<=n;j++ )
            106        {
            107            c[i][j]=map[i][j];
            108        }

            109    }

            110}

            111int main()
            112{
            113    int i;
            114    while (scanf("%d%d%d%d",&n,&np,&nc,&nt)!=EOF)
            115    {
            116        memset(flow,0,sizeof(flow));
            117        init();
            118        Edmonds_Karp(1,n);
            119        sum=0;
            120        for (i=1;i<=n;i++ )
            121        {
            122            sum+=flow[1][i];
            123        }

            124        printf("%d\n",sum);
            125    }

            126    return 0;
            127}

            128



            posted on 2012-02-23 17:34 jh818012 閱讀(131) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            欧美777精品久久久久网| 青青青伊人色综合久久| 久久精品国产精品亚洲人人 | 久久久久国产精品人妻| 久久无码高潮喷水| 色偷偷偷久久伊人大杳蕉| 久久电影网| 色偷偷888欧美精品久久久| 久久精品夜色噜噜亚洲A∨| 99久久99久久精品国产片果冻 | 成人午夜精品久久久久久久小说| 久久棈精品久久久久久噜噜| 免费精品久久久久久中文字幕| 93精91精品国产综合久久香蕉| 女人高潮久久久叫人喷水| 色综合久久综合中文综合网| 国产精品成人久久久久久久| 久久久久久久97| 婷婷综合久久中文字幕蜜桃三电影| 99久久精品无码一区二区毛片| 国产∨亚洲V天堂无码久久久 | 久久久久一区二区三区| 久久久av波多野一区二区| 久久婷婷国产综合精品| 精品久久久久久久久午夜福利| 久久久久亚洲AV成人片 | 欧美激情精品久久久久久久九九九| 人妻精品久久久久中文字幕| 欧美一级久久久久久久大片| 久久国产视频99电影| 久久九九久精品国产免费直播| 无码人妻久久一区二区三区免费| 99久久人妻无码精品系列| 久久久久国产亚洲AV麻豆| 久久91精品国产91久久麻豆| 久久狠狠高潮亚洲精品| 国产香蕉97碰碰久久人人| 久久99精品国产麻豆| 亚洲AV无码一区东京热久久| 色播久久人人爽人人爽人人片aV| 丁香五月网久久综合|