• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1459

            Power Network

            Time Limit: 2000MS Memory Limit: 32768K
            Total Submissions: 16422 Accepted: 8712

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
                     (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
                     (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.


            哎,糾結死了,我對網絡流這方面理解的還不行

            如果自己寫代碼的話還是有點難度,所以找個好的模版還是很重要的

            額,模版也比較糾結,好多中算法

            找了個比較簡單的算法 Edmonds_karp 

            時間復雜度為O(V*E^2)

            Edmonds-Karp算法就是利用寬度優先不斷地找一條從s到t的可改進路,然后改進流量,一直到找不到可改進路為止。

            由于用寬度優先,每次找到的可改進路是最短的可改進路,通過分析可以知道其復雜度為O(VE^2)。

            代碼好丑
              1#include<stdio.h>
              2#include<string.h>
              3#include<math.h>
              4#define MAX 105
              5int map[MAX][MAX],flow[MAX][MAX],c[MAX][MAX];
              6int n,nc,np,nt,s,t;
              7int sum;
              8int min(int a,int b)
              9{
             10    if (a<b) return a;else return b;
             11}

             12void Edmonds_Karp()
             13{
             14    int l1[MAX],l2[MAX],q[MAX];
             15    int u,v,head,tail;
             16    do 
             17    {
             18        memset(l1,0,sizeof(l1));
             19        memset(l2,0,sizeof(l2));//初始化所有標號為0
             20        l1[s]=0;l2[s]=0x7fffffff;
             21        head=0;tail=1;
             22        q[tail]=s;
             23        while (head<tail&&l2[t]==0)//q未空且匯點未標號
             24        {
             25            head++;
             26            u=q[head];
             27            for (v=1;v<=n ;v++ )
             28            {
             29                if (flow[u][v]<c[u][v]&&l2[v]==0)//未標號且有可行流
             30                {
             31                    tail++;
             32                    q[tail]=v;
             33                    l2[v]=min(c[u][v]-flow[u][v],l2[u]);
             34                    //l2[v]記錄s到v增廣路中最小的可改進流
             35                    l1[v]=u;//記錄前驅
             36                }

             37            }

             38        }

             39        if (l2[t]>0)//匯點未標號
             40        {
             41            v=t;
             42            u=l1[v];
             43            while (v!=s)
             44            {
             45                flow[u][v]+=l2[t];
             46                flow[v][u]=-flow[u][v];
             47                v=u;
             48                u=l1[v];
             49            }

             50        }

             51    }

             52    while (l2[t]!=0);//直到匯點未標號
             53}

             54void init()
             55{
             56    int i,j,a,b,w,x;
             57    char ch1;
             58    s=1;t=n+2;
             59    memset(map,0,sizeof(map));
             60    for (i=1;i<=nt ;i++ )
             61    {
             62        scanf("%c",&ch1);
             63        while (ch1!='(')
             64        {
             65            scanf("%c",&ch1);
             66        }

             67        scanf("%d",&a);a=a+2;
             68        scanf("%c",&ch1);scanf("%d",&b);b=b+2;
             69        scanf("%c",&ch1);scanf("%d",&w);
             70        map[a][b]=w;
             71    }

             72    for (i=1;i<=np ;i++ )
             73    {
             74        scanf("%c",&ch1);
             75        while (ch1!='(')
             76        {
             77            scanf("%c",&ch1);
             78        }

             79        scanf("%d",&a);a=a+2;
             80        scanf("%c",&ch1);scanf("%d",&w);
             81        map[s][a]=w;//map[a][s]=-w;
             82    }

             83    for (i=1;i<=nc ;i++ )
             84    {
             85        scanf("%c",&ch1);
             86        while (ch1!='(')
             87        {
             88            scanf("%c",&ch1);
             89        }

             90        scanf("%d",&a);a=a+2;
             91        scanf("%c",&ch1);scanf("%d",&w);
             92        map[a][t]=w;//map[t][a]=-w;
             93    }

             94    n=n+2;
             95    /*/for (i=1;i<=n ;i++ )
             96    {
             97        for (j=1;j<=n;j++ )
             98        {
             99            printf("%d ",map[i][j]);
            100        }
            101        printf("\n");
            102    }*/

            103    for (i=1;i<=n ;i++ )
            104    {
            105        for (j=1;j<=n;j++ )
            106        {
            107            c[i][j]=map[i][j];
            108        }

            109    }

            110}

            111int main()
            112{
            113    int i;
            114    while (scanf("%d%d%d%d",&n,&np,&nc,&nt)!=EOF)
            115    {
            116        memset(flow,0,sizeof(flow));
            117        init();
            118        Edmonds_Karp(1,n);
            119        sum=0;
            120        for (i=1;i<=n;i++ )
            121        {
            122            sum+=flow[1][i];
            123        }

            124        printf("%d\n",sum);
            125    }

            126    return 0;
            127}

            128



            posted on 2012-02-23 17:34 jh818012 閱讀(131) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            66精品综合久久久久久久| 久久久噜噜噜久久| 97久久超碰国产精品旧版| 成人午夜精品久久久久久久小说| 91精品国产综合久久四虎久久无码一级| 久久久精品视频免费观看| 国产A三级久久精品| 国产三级精品久久| 一本一本久久aa综合精品| 2020最新久久久视精品爱| 亚洲精品乱码久久久久久蜜桃不卡| 99久久伊人精品综合观看| 精品国产乱码久久久久软件 | 欧美牲交A欧牲交aⅴ久久| 中文精品久久久久国产网址| 精品久久久久久无码不卡| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久99精品国产99久久| 久久精品桃花综合| 国产精品免费久久久久久久久| 色妞色综合久久夜夜| 久久精品无码一区二区日韩AV| 国产精品九九九久久九九| 色综合久久综合中文综合网| 久久久午夜精品福利内容| 国产精品成人99久久久久 | 草草久久久无码国产专区| 精品久久久久久无码专区不卡| 久久天天躁狠狠躁夜夜躁2014| 香蕉久久影院| 久久成人小视频| 久久亚洲AV成人无码| 久久午夜夜伦鲁鲁片免费无码影视 | 欧美成人免费观看久久| 久久精品国产亚洲av瑜伽| 狠狠色综合久久久久尤物 | 亚洲国产精品成人久久| 亚洲色欲久久久综合网东京热| 亚洲va中文字幕无码久久不卡| 久久热这里只有精品在线观看| 中文字幕无码免费久久|