楊健老師的論文KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition   5.1節(jié)采用該分類器,Why can LDA be performed in PCA transformed space也采用該分類器,等同于葉杰平老師論文Generalized Linear Discriminant Analysis: A Unified Framework and Efficient Model Selection    IV節(jié)的nearest-centroid classifier(也即汪增福老師講的平均樣本法),定義如下:(摘自網(wǎng)頁(yè)http://homepages.inf.ed.ac.uk/rbf/HIPR2/classify.htm

Suppose that each training class is represented by a prototype (or mean) vector:

Eqn:eqncl1

where Eqn:eqnnj is the number of training pattern vectors from class Eqn:eqnomegj. In the example classification problem given above, Eqn:eqnmneed and Eqn:eqnmbolt as shown in Figure 2.




Figure 2 Feature space: + sewing needles, o bolts, * class mean

Based on this, we can assign any given pattern Eqn:eqnx to the class of its closest prototype by determining its proximity to each Eqn:eqnmj. If Euclidean distance is our measure of proximity, then the distance to the prototype is given by

Eqn:eqnclDJ

It is not difficult to show that this is equivalent to computing

Eqn:eqncl2

and assign Eqn:eqnx to class Eqn:eqnomegj if Eqn:eqndj yields the largest value.
顯然,minimum distance classifier的效率要比nearest neighbor classifier (NN)要低,因?yàn)閷?duì)于任意一個(gè)測(cè)試樣本,前者只需要計(jì)算到訓(xùn)練樣本的幾個(gè)類心的距離,而nearest neighbor classifier (NN)要計(jì)算與所有訓(xùn)練樣本的距離。楊健老師論文KPCA Plus LDA   5.2節(jié)也有原話:A minimum distance classifier is employed for computational efficiency.

Other reference:
Mar 24, 2012 gmail 附件講義7.3節(jié)有minimum distance classifier的英文描述