歐拉函數的應用
#include <stdio.h>
#include <math.h>

const int MAX = 32000;

int prime[MAX];

int number[MAX];

int find ( int n )


{

number[0] = number[1] = 1;
for ( int i=2; i<=n; i++ )

{
number[i] = 0;
}
for ( int j=2; j<=n; j++ )

{
for ( int z=j+j; z<=n; z+=j )

{
if ( ! number[z] )

{
number[z] = 1;
}
}
}
int p = 0;
for ( i=0; i<=n; i++ )

{
if ( !number[i] )

{
prime[p++] = i;
}
}
return p;
}

int num[MAX];
int pre;

int f ( int n, int len )


{
int l, r, mid;
int flag = 1;
int n2 = ( int )( sqrt ( (double)n ) ) + 1;

l = 0;
r = len - 1;
while ( l<=r )

{
mid = ( l + r ) / 2;
if ( prime[mid] > n2 )

{
r = mid - 1;
}
else

{
l = mid + 1;
}
}
for ( int i=r; i>=0; i-- )

{
if ( ! ( n % prime[i] ) )

{
flag = 0;
while ( ! ( n % prime[i] ) )

{
num[pre++] = prime[i];
n /= prime[i];
}
break;
}
}
if ( flag )

{
num[pre++] = n;
n = 1;
}
return n;
}

int power ( int a, int n )


{

int sum = 1;
int count = a;

while ( n )

{
if ( n & 1 )

{
sum *= count;
}
n >>= 1;
count *= count;
}
return sum;
}

int main ()


{

int n;
int sum, count;

int len = find ( MAX );
while ( scanf ( "%d", &n ) != EOF && n )

{
if ( n == 1 )

{
printf ( "0\n" );
continue;
}
pre = 0;
while ( n > 1 )

{
n = f ( n, len );
}
count = 1;
sum = 1;
for ( int i=0; i<pre-1; i++ )

{
if ( num[i] != num[i+1] )

{
sum *= (num[i]-1)*power ( num[i], count-1 );
count = 1;
}
else

{
count ++;
}
}
sum *= (num[i]-1)*power ( num[i], count-1 );

printf ( "%d\n", sum );
}
return 0;
}
#include <stdio.h>
#include <math.h>
const int MAX = 32000;
int prime[MAX];
int number[MAX];
int find ( int n )

{
number[0] = number[1] = 1;
for ( int i=2; i<=n; i++ )
{
number[i] = 0;
}
for ( int j=2; j<=n; j++ )
{
for ( int z=j+j; z<=n; z+=j )
{
if ( ! number[z] )
{
number[z] = 1;
}
}
}
int p = 0;
for ( i=0; i<=n; i++ )
{
if ( !number[i] )
{
prime[p++] = i;
}
}
return p;
}
int num[MAX];
int pre;
int f ( int n, int len )

{
int l, r, mid;
int flag = 1;
int n2 = ( int )( sqrt ( (double)n ) ) + 1;
l = 0;
r = len - 1;
while ( l<=r )
{
mid = ( l + r ) / 2;
if ( prime[mid] > n2 )
{
r = mid - 1;
}
else
{
l = mid + 1;
}
}
for ( int i=r; i>=0; i-- )
{
if ( ! ( n % prime[i] ) )
{
flag = 0;
while ( ! ( n % prime[i] ) )
{
num[pre++] = prime[i];
n /= prime[i];
}
break;
}
}
if ( flag )
{
num[pre++] = n;
n = 1;
}
return n;
}
int power ( int a, int n )

{
int sum = 1;
int count = a;
while ( n )
{
if ( n & 1 )
{
sum *= count;
}
n >>= 1;
count *= count;
}
return sum;
}
int main ()

{
int n;
int sum, count;
int len = find ( MAX );
while ( scanf ( "%d", &n ) != EOF && n )
{
if ( n == 1 )
{
printf ( "0\n" );
continue;
}
pre = 0;
while ( n > 1 )
{
n = f ( n, len );
}
count = 1;
sum = 1;
for ( int i=0; i<pre-1; i++ )
{
if ( num[i] != num[i+1] )
{
sum *= (num[i]-1)*power ( num[i], count-1 );
count = 1;
}
else
{
count ++;
}
}
sum *= (num[i]-1)*power ( num[i], count-1 );
printf ( "%d\n", sum );
}
return 0;
}

