http://www.concretevitamin.com.cn/informatics/Pack/Index.html
背包問題九講
version 1.1 build 20071115
前言
目錄
第一講 01背包問題
第二講 完全背包問題
第三講 多重背包問題
第四講 混合三種背包問題
第五講 二維費(fèi)用的背包問題
第六講 分組的背包問題
第七講 有依賴的背包問題
第八講 泛化物品
第九講 背包問題問法的變化
附錄一:USACO中的背包問題
附錄二:背包問題的搜索解法
聯(lián)系方式
致謝
前言
本篇文章是我(dd_engi)正在進(jìn)行中的一個(gè)雄心勃勃的寫作計(jì)劃的一部分,這個(gè)計(jì)劃的內(nèi)容是寫作一份較為完善的NOIP難度的動(dòng)態(tài)規(guī)劃總結(jié),名為《解動(dòng)態(tài)規(guī)劃題的基本思考方式》?,F(xiàn)在你看到的是這個(gè)寫作計(jì)劃最先發(fā)布的一部分。
背包問題是一個(gè)經(jīng)典的動(dòng)態(tài)規(guī)劃模型。它既簡(jiǎn)單形象容易理解,又在某種程度上能夠揭示動(dòng)態(tài)規(guī)劃的本質(zhì),故不少教材都把它作為動(dòng)態(tài)規(guī)劃部分的第一道例題,我也將它放在我的寫作計(jì)劃的第一部分。
讀本文最重要的是思考。因?yàn)槲业恼Z言和寫作方式向來不以易于理解為長(zhǎng),思路也偶有跳躍的地方,后面更有需要大量思考才能理解的比較抽象的內(nèi)容。更重要的是:不大量思考,絕對(duì)不可能學(xué)好動(dòng)態(tài)規(guī)劃這一信息學(xué)奧賽中最精致的部分。
你現(xiàn)在看到的是本文的v1.1版,發(fā)布于2007年11月15日。我會(huì)長(zhǎng)期維護(hù)這份文本,把大家的意見和建議融入其中,也會(huì)不斷加入我在OI學(xué)習(xí)以及將來可能的ACM-ICPC的征程中得到的新的心得。但目前本文還沒有一個(gè)固定的發(fā)布頁面,想了解本文是否有更新版本發(fā)布,可以在OIBH論壇中以“背包問題九講”為關(guān)鍵字搜索貼子,每次比較重大的版本更新都會(huì)在這個(gè)論壇里發(fā)貼公布。也可以用“背包問題九講”為關(guān)鍵字在搜索引擎中搜索以得到最新版本。
目錄
第一講 01背包問題
這是最基本的背包問題,每個(gè)物品最多只能放一次。
P01: 01背包問題
題目
有N件物品和一個(gè)容量為V的背包。第i件物品的費(fèi)用是c[i],價(jià)值是w[i]。求解將哪些物品裝入背包可使價(jià)值總和最大。
基本思路
這是最基礎(chǔ)的背包問題,特點(diǎn)是:每種物品僅有一件,可以選擇放或不放。
用子問題定義狀態(tài):即f[i][v]表示前i件物品恰放入一個(gè)容量為v的背包可以獲得的最大價(jià)值。則其狀態(tài)轉(zhuǎn)移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
這個(gè)方程非常重要,基本上所有跟背包相關(guān)的問題的方程都是由它衍生出來的。所以有必要將它詳細(xì)解釋一下:“將前i件物品放入容量為v的背包中”這個(gè)子問題,若只考慮第i件物品的策略(放或不放),那么就可以轉(zhuǎn)化為一個(gè)只牽扯前i-1件物品的問題。如果不放第i件物品,那么問題就轉(zhuǎn)化為“前i-1件物品放入容量為v的背包中”,價(jià)值為f[i-1][v];如果放第i件物品,那么問題就轉(zhuǎn)化為“前i-1件物品放入剩下的容量為v-c[i]的背包中”,此時(shí)能獲得的最大價(jià)值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價(jià)值w[i]。
優(yōu)化空間復(fù)雜度
以上方法的時(shí)間和空間復(fù)雜度均為O(VN),其中時(shí)間復(fù)雜度應(yīng)該已經(jīng)不能再優(yōu)化了,但空間復(fù)雜度卻可以優(yōu)化到O。
先考慮上面講的基本思路如何實(shí)現(xiàn),肯定是有一個(gè)主循環(huán)i=1..N,每次算出來二維數(shù)組f[i][0..V]的所有值。那么,如果只用一個(gè)數(shù)組f[0..V],能不能保證第i次循環(huán)結(jié)束后f[v]中表示的就是我們定義的狀態(tài)f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]兩個(gè)子問題遞推而來,能否保證在推f[i][v]時(shí)(也即在第i次主循環(huán)中推f[v]時(shí))能夠得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事實(shí)上,這要求在每次主循環(huán)中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時(shí)f[v-c[i]]保存的是狀態(tài)f[i-1][v-c[i]]的值。偽代碼如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當(dāng)于我們的轉(zhuǎn)移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因?yàn)楝F(xiàn)在的f[v-c[i]]就相當(dāng)于原來的f[i-1][v-c[i]]。如果將v的循環(huán)順序從上面的逆序改成順序的話,那么則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個(gè)重要的背包問題P02最簡(jiǎn)捷的解決方案,故學(xué)習(xí)只用一維數(shù)組解01背包問題是十分必要的。
事實(shí)上,使用一維數(shù)組解01背包的程序在后面會(huì)被多次用到,所以這里抽象出一個(gè)處理一件01背包中的物品過程,以后的代碼中直接調(diào)用不加說明。
過程ZeroOnePack,表示處理一件01背包中的物品,兩個(gè)參數(shù)cost、weight分別表明這件物品的費(fèi)用和價(jià)值。
procedure ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意這個(gè)過程里的處理與前面給出的偽代碼有所不同。前面的示例程序?qū)懗蓈=V..0是為了在程序中體現(xiàn)每個(gè)狀態(tài)都按照方程求解了,避免不必要的思維復(fù)雜度。而這里既然已經(jīng)抽象成看作黑箱的過程了,就可以加入優(yōu)化。費(fèi)用為cost的物品不會(huì)影響狀態(tài)f[0..cost-1],這是顯然的。
有了這個(gè)過程以后,01背包問題的偽代碼就可以這樣寫:
for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的細(xì)節(jié)問題
我們看到的求最優(yōu)解的背包問題題目中,事實(shí)上有兩種不太相同的問法。有的題目要求“恰好裝滿背包”時(shí)的最優(yōu)解,有的題目則并沒有要求必須把背包裝滿。一種區(qū)別這兩種問法的實(shí)現(xiàn)方法是在初始化的時(shí)候有所不同。
如果是第一種問法,要求恰好裝滿背包,那么在初始化時(shí)除了f[0]為0其它f[1..V]均設(shè)為-∞,這樣就可以保證最終得到的f[N]是一種恰好裝滿背包的最優(yōu)解。
如果并沒有要求必須把背包裝滿,而是只希望價(jià)格盡量大,初始化時(shí)應(yīng)該將f[0..V]全部設(shè)為0。
為什么呢?可以這樣理解:初始化的f數(shù)組事實(shí)上就是在沒有任何物品可以放入背包時(shí)的合法狀態(tài)。如果要求背包恰好裝滿,那么此時(shí)只有容量為0的背包可能被價(jià)值為0的nothing“恰好裝滿”,其它容量的背包均沒有合法的解,屬于未定義的狀態(tài),它們的值就都應(yīng)該是-∞了。如果背包并非必須被裝滿,那么任何容量的背包都有一個(gè)合法解“什么都不裝”,這個(gè)解的價(jià)值為0,所以初始時(shí)狀態(tài)的值也就全部為0了。
這個(gè)小技巧完全可以推廣到其它類型的背包問題,后面也就不再對(duì)進(jìn)行狀態(tài)轉(zhuǎn)移之前的初始化進(jìn)行講解。
一個(gè)常數(shù)優(yōu)化
前面的偽代碼中有 for v=V..1,可以將這個(gè)循環(huán)的下限進(jìn)行改進(jìn)。
由于只需要最后f[v]的值,倒推前一個(gè)物品,其實(shí)只要知道f[v-w[n]]即可。以此類推,對(duì)以第j個(gè)背包,其實(shí)只需要知道到f[v-sum{w[j..n]}]即可,即代碼中的
for i=1..N
for v=V..0
可以改成
for i=1..n
bound=max{V-sum{w[i..n]},c[i]}
for v=V..bound
這對(duì)于V比較大時(shí)是有用的。
小結(jié)
01背包問題是最基本的背包問題,它包含了背包問題中設(shè)計(jì)狀態(tài)、方程的最基本思想,另外,別的類型的背包問題往往也可以轉(zhuǎn)換成01背包問題求解。故一定要仔細(xì)體會(huì)上面基本思路的得出方法,狀態(tài)轉(zhuǎn)移方程的意義,以及最后怎樣優(yōu)化的空間復(fù)雜度。
第二講 完全背包問題
第二個(gè)基本的背包問題模型,每種物品可以放無限多次。
P02: 完全背包問題
題目
有N種物品和一個(gè)容量為V的背包,每種物品都有無限件可用。第i種物品的費(fèi)用是c[i],價(jià)值是w[i]。求解將哪些物品裝入背包可使這些物品的費(fèi)用總和不超過背包容量,且價(jià)值總和最大。
基本思路
這個(gè)問題非常類似于01背包問題,所不同的是每種物品有無限件。也就是從每種物品的角度考慮,與它相關(guān)的策略已并非取或不取兩種,而是有取0件、取1件、取2件……等很多種。如果仍然按照解01背包時(shí)的思路,令f[i][v]表示前i種物品恰放入一個(gè)容量為v的背包的最大權(quán)值。仍然可以按照每種物品不同的策略寫出狀態(tài)轉(zhuǎn)移方程,像這樣:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}
這跟01背包問題一樣有O(VN)個(gè)狀態(tài)需要求解,但求解每個(gè)狀態(tài)的時(shí)間已經(jīng)不是常數(shù)了,求解狀態(tài)f[i][v]的時(shí)間是O(v/c[i]),總的復(fù)雜度可以認(rèn)為是O(V*Σ(V/c[i])),是比較大的。
將01背包問題的基本思路加以改進(jìn),得到了這樣一個(gè)清晰的方法。這說明01背包問題的方程的確是很重要,可以推及其它類型的背包問題。但我們還是試圖改進(jìn)這個(gè)復(fù)雜度。
一個(gè)簡(jiǎn)單有效的優(yōu)化
完全背包問題有一個(gè)很簡(jiǎn)單有效的優(yōu)化,是這樣的:若兩件物品i、j滿足c[i]<=c[j]且w[i]>=w[j],則將物品j去掉,不用考慮。這個(gè)優(yōu)化的正確性顯然:任何情況下都可將價(jià)值小費(fèi)用高得j換成物美價(jià)廉的i,得到至少不會(huì)更差的方案。對(duì)于隨機(jī)生成的數(shù)據(jù),這個(gè)方法往往會(huì)大大減少物品的件數(shù),從而加快速度。然而這個(gè)并不能改善最壞情況的復(fù)雜度,因?yàn)橛锌赡芴貏e設(shè)計(jì)的數(shù)據(jù)可以一件物品也去不掉。
這個(gè)優(yōu)化可以簡(jiǎn)單的O(N^2)地實(shí)現(xiàn),一般都可以承受。另外,針對(duì)背包問題而言,比較不錯(cuò)的一種方法是:首先將費(fèi)用大于V的物品去掉,然后使用類似計(jì)數(shù)排序的做法,計(jì)算出費(fèi)用相同的物品中價(jià)值最高的是哪個(gè),可以O(shè)(V+N)地完成這個(gè)優(yōu)化。這個(gè)不太重要的過程就不給出偽代碼了,希望你能獨(dú)立思考寫出偽代碼或程序。
轉(zhuǎn)化為01背包問題求解
既然01背包問題是最基本的背包問題,那么我們可以考慮把完全背包問題轉(zhuǎn)化為01背包問題來解。最簡(jiǎn)單的想法是,考慮到第i種物品最多選V/c[i]件,于是可以把第i種物品轉(zhuǎn)化為V/c[i]件費(fèi)用及價(jià)值均不變的物品,然后求解這個(gè)01背包問題。這樣完全沒有改進(jìn)基本思路的時(shí)間復(fù)雜度,但這畢竟給了我們將完全背包問題轉(zhuǎn)化為01背包問題的思路:將一種物品拆成多件物品。
更高效的轉(zhuǎn)化方法是:把第i種物品拆成費(fèi)用為c[i]*2^k、價(jià)值為w[i]*2^k的若干件物品,其中k滿足c[i]*2^k<=V。這是二進(jìn)制的思想,因?yàn)椴还茏顑?yōu)策略選幾件第i種物品,總可以表示成若干個(gè)2^k件物品的和。這樣把每種物品拆成O(log V/c[i])件物品,是一個(gè)很大的改進(jìn)。
但我們有更優(yōu)的O(VN)的算法。
O(VN)的算法
這個(gè)算法使用一維數(shù)組,先看偽代碼:
for i=1..N
for v=0..V
f[v]=max{f[v],f[v-cost]+weight}
你會(huì)發(fā)現(xiàn),這個(gè)偽代碼與P01的偽代碼只有v的循環(huán)次序不同而已。為什么這樣一改就可行呢?首先想想為什么P01中要按照v=V..0的逆序來循環(huán)。這是因?yàn)橐WC第i次循環(huán)中的狀態(tài)f[i][v]是由狀態(tài)f[i-1][v-c[i]]遞推而來。換句話說,這正是為了保證每件物品只選一次,保證在考慮“選入第i件物品”這件策略時(shí),依據(jù)的是一個(gè)絕無已經(jīng)選入第i件物品的子結(jié)果f[i-1][v-c[i]]。而現(xiàn)在完全背包的特點(diǎn)恰是每種物品可選無限件,所以在考慮“加選一件第i種物品”這種策略時(shí),卻正需要一個(gè)可能已選入第i種物品的子結(jié)果f[i][v-c[i]],所以就可以并且必須采用v=0..V的順序循環(huán)。這就是這個(gè)簡(jiǎn)單的程序?yàn)楹纬闪⒌牡览怼?/p>
值得一提的是,上面的偽代碼中兩層for循環(huán)的次序可以顛倒。這個(gè)結(jié)論有可能會(huì)帶來算法時(shí)間常數(shù)上的優(yōu)化。
這個(gè)算法也可以以另外的思路得出。例如,將基本思路中求解f[i][v-c[i]]的狀態(tài)轉(zhuǎn)移方程顯式地寫出來,代入原方程中,會(huì)發(fā)現(xiàn)該方程可以等價(jià)地變形成這種形式:
f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}
將這個(gè)方程用一維數(shù)組實(shí)現(xiàn),便得到了上面的偽代碼。
最后抽象出處理一件完全背包類物品的過程偽代碼:
procedure CompletePack(cost,weight)
for v=cost..V
f[v]=max{f[v],f[v-c[i]]+w[i]}
總結(jié)
完全背包問題也是一個(gè)相當(dāng)基礎(chǔ)的背包問題,它有兩個(gè)狀態(tài)轉(zhuǎn)移方程,分別在“基本思路”以及“O(VN)的算法“的小節(jié)中給出。希望你能夠?qū)@兩個(gè)狀態(tài)轉(zhuǎn)移方程都仔細(xì)地體會(huì),不僅記住,也要弄明白它們是怎么得出來的,最好能夠自己想一種得到這些方程的方法。事實(shí)上,對(duì)每一道動(dòng)態(tài)規(guī)劃題目都思考其方程的意義以及如何得來,是加深對(duì)動(dòng)態(tài)規(guī)劃的理解、提高動(dòng)態(tài)規(guī)劃功力的好方法。
第三講 多重背包問題
每種物品有一個(gè)固定的次數(shù)上限。
P03: 多重背包問題
題目
有N種物品和一個(gè)容量為V的背包。第i種物品最多有n[i]件可用,每件費(fèi)用是c[i],價(jià)值是w[i]。求解將哪些物品裝入背包可使這些物品的費(fèi)用總和不超過背包容量,且價(jià)值總和最大。
基本算法
這題目和完全背包問題很類似。基本的方程只需將完全背包問題的方程略微一改即可,因?yàn)閷?duì)于第i種物品有n[i]+1種策略:取0件,取1件……取n[i]件。令f[i][v]表示前i種物品恰放入一個(gè)容量為v的背包的最大權(quán)值,則有狀態(tài)轉(zhuǎn)移方程:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}
復(fù)雜度是O(V*Σn[i])。
轉(zhuǎn)化為01背包問題
另一種好想好寫的基本方法是轉(zhuǎn)化為01背包求解:把第i種物品換成n[i]件01背包中的物品,則得到了物品數(shù)為Σn[i]的01背包問題,直接求解,復(fù)雜度仍然是O(V*Σn[i])。
但是我們期望將它轉(zhuǎn)化為01背包問題之后能夠像完全背包一樣降低復(fù)雜度。仍然考慮二進(jìn)制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價(jià)于取若干件代換以后的物品。另外,取超過n[i]件的策略必不能出現(xiàn)。
方法是:將第i種物品分成若干件物品,其中每件物品有一個(gè)系數(shù),這件物品的費(fèi)用和價(jià)值均是原來的費(fèi)用和價(jià)值乘以這個(gè)系數(shù)。使這些系數(shù)分別為1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數(shù)。例如,如果n[i]為13,就將這種物品分成系數(shù)分別為1,2,4,6的四件物品。
分成的這幾件物品的系數(shù)和為n[i],表明不可能取多于n[i]件的第i種物品。另外這種方法也能保證對(duì)于0..n[i]間的每一個(gè)整數(shù),均可以用若干個(gè)系數(shù)的和表示,這個(gè)證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,并不難,希望你自己思考嘗試一下。
這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉(zhuǎn)化為了復(fù)雜度為<math>O(V*Σlog n[i])的01背包問題,是很大的改進(jìn)。
下面給出O(log amount)時(shí)間處理一件多重背包中物品的過程,其中amount表示物品的數(shù)量:
procedure MultiplePack(cost,weight,amount)
if cost*amount>=V
CompletePack(cost,weight)
return
integer k=1
while k<amount
ZeroOnePack(k*cost,k*weight)
amount=amount-k
k=k*2
ZeroOnePack(amount*cost,amount*weight)
希望你仔細(xì)體會(huì)這個(gè)偽代碼,如果不太理解的話,不妨翻譯成程序代碼以后,單步執(zhí)行幾次,或者頭腦加紙筆模擬一下,也許就會(huì)慢慢理解了。
O(VN)的算法
多重背包問題同樣有O(VN)的算法。這個(gè)算法基于基本算法的狀態(tài)轉(zhuǎn)移方程,但應(yīng)用單調(diào)隊(duì)列的方法使每個(gè)狀態(tài)的值可以以均攤O(1)的時(shí)間求解。由于用單調(diào)隊(duì)列優(yōu)化的DP已超出了NOIP的范圍,故本文不再展開講解。我最初了解到這個(gè)方法是在樓天成的“男人八題”幻燈片上。
小結(jié)
這里我們看到了將一個(gè)算法的復(fù)雜度由O(V*Σn[i])改進(jìn)到O(V*Σlog n[i])的過程,還知道了存在應(yīng)用超出NOIP范圍的知識(shí)的O(VN)算法。希望你特別注意“拆分物品”的思想和方法,自己證明一下它的正確性,并將完整的程序代碼寫出來。