青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

posts - 297,  comments - 15,  trackbacks - 0

Radix sort is the algorithm used by the card-sorting machines you now find only in computer museums. The cards are organized into 80 columns, and in each column a hole can be punched in one of 12 places. The sorter can be mechanically "programmed" to examine a given column of each card in a deck and distribute the card into one of 12 bins depending on which place has been punched. An operator can then gather the cards bin by bin, so that cards with the first place punched are on top of cards with the second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other two places are used for encoding nonnumeric characters.) A d-digit number would then occupy a field of d columns. Since the card sorter can look at only one column at a time, the problem of sorting n cards on a d-digit number requires a sorting algorithm.

Intuitively, one might want to sort numbers on their most significant digit, sort each of the resulting bins recursively, and then combine the decks in order. Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of the bins, this procedure generates many intermediate piles of cards that must be kept track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sorting on the least significant digit first. The cards are then combined into a single deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2 bin, and so on. Then the entire deck is sorted again on the second-least significant digit and recombined in a like manner. The process continues until the cards have been sorted on all d digits. Remarkably, at that point the cards are fully sorted on the d-digit number. Thus, only d passes through the deck are required to sort. Figure 8.3 shows how radix sort operates on a "deck" of seven 3-digit numbers.

 

Figure 8.3:
The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.

It is essential that the digit sorts in this algorithm be stable. The sort performed by a card sorter is stable, but the operator has to be wary about not changing the order of the cards as they come out of a bin, even though all the cards in a bin have the same digit in the chosen column.

In a typical computer, which is a sequential random-access machine, radix sort is sometimes used to sort records of information that are keyed by multiple fields. For example, we might wish to sort dates by three keys: year, month, and day. We could run a sorting algorithm with a comparison function that, given two dates, compares years, and if there is a tie, compares months, and if another tie occurs, compares days. Alternatively, we could sort the information three times with a stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest-order digit.

RADIX-SORT(A, d)
1  for i  1 to d
2     do use a stable sort to sort array A on digit i
Lemma 8.3
Start example

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in Θ(d(n + k)) time.

Proof The correctness of radix sort follows by induction on the column being sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable sort used as the intermediate sorting algorithm. When each digit is in the range 0 to k-1 (so that it can take on k possible values), and k is not too large, counting sort is the obvious choice. Each pass over n d-digit numbers then takes time Θ(n + k). There are d passes, so the total time for radix sort is Θ(d(n + k)).

End example

When d is constant and k = O(n), radix sort runs in linear time. More generally, we have some flexibility in how to break each key into digits.

Lemma 8.4
Start example

Given n b-bit numbers and any positive integer r b, RADIX-SORT correctly sorts these numbers in Θ((b/r)(n + 2r)) time.

Proof For a value r b, we view each key as having d = b/r digits of r bits each. Each digit is an integer in the range 0 to 2r - 1, so that we can use counting sort with k = 2r - 1. (For example, we can view a 32-bit word as having 4 8-bit digits, so that b = 32, r = 8, k = 2r - 1 = 255, and d = b/r = 4.) Each pass of counting sort takes time Θ(n + k) = Θ(n + 2r) and there are d passes, for a total running time of Θ(d(n + 2r )) = Θ((b/r)(n + 2r)).

End example

 

For given values of n and b, we wish to choose the value of r, with r b, that minimizes the expression (b/r)(n + 2r). If b < lg n, then for any value of r b, we have that (n + 2r) = Θ(n). Thus, choosing r = b yields a running time of (b/b)(n + 2b) = Θ(n), which is asymptotically optimal. If b lg n, then choosing r = lg n gives the best time to within a constant factor, which we can see as follows. Choosing r = lg n yields a running time of Θ(bn/ lg n). As we increase r above lg n, the 2r term in the numerator increases faster than the r term in the denominator, and so increasing r above lg n yields a running time of Θ(bn/ lg n). If instead we were to decrease r below lg n, then the b/r term increases and the n + 2r term remains at Θ(n).

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-sort? If b = O(lg n), as is often the case, and we choose r lg n, then radix sort's running time is Θ(n), which appears to be better than quicksort's average-case time of Θ(n lg n). The constant factors hidden in the Θ-notation differ, however. Although radix sort may make fewer passes than quicksort over the n keys, each pass of radix sort may take significantly longer. Which sorting algorithm is preferable depends on the characteristics of the implementations, of the underlying machine (e.g., quicksort often uses hardware caches more effectively than radix sort), and of the input data. Moreover, the version of radix sort that uses counting sort as the intermediate stable sort does not sort in place, which many of the Θ(n lg n)-time comparison sorts do. Thus, when primary memory storage is at a premium, an in-place algorithm such as quicksort may be preferable

 

 

 

posted on 2010-08-03 21:43 chatler 閱讀(939) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm
<2025年11月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

常用鏈接

留言簿(10)

隨筆分類(307)

隨筆檔案(297)

algorithm

Books_Free_Online

C++

database

Linux

Linux shell

linux socket

misce

  • cloudward
  • 感覺這個博客還是不錯,雖然做的東西和我不大相關(guān),覺得看看還是有好處的

network

OSS

  • Google Android
  • Android is a software stack for mobile devices that includes an operating system, middleware and key applications. This early look at the Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
  • os161 file list

overall

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产精品一级| 性欧美18~19sex高清播放| 一本一本a久久| 亚洲福利小视频| 亚洲缚视频在线观看| 亚洲电影一级黄| 日韩午夜精品视频| 亚洲午夜电影网| 久久精品国产99| 欧美国产先锋| 一本色道久久综合| 久久福利毛片| 欧美精品一区在线观看| 欧美午夜一区二区福利视频| 国产婷婷色一区二区三区在线| 韩国av一区二区三区四区| 亚洲国产视频a| 亚洲视频视频在线| 欧美一级淫片播放口| 欧美 日韩 国产精品免费观看| 亚洲精品一区二区三区在线观看| 一本色道久久| 免费日韩视频| 国产亚洲欧洲| 国产精品99久久久久久久vr| 老司机午夜精品视频| 亚洲国产成人精品视频| 亚洲精品资源美女情侣酒店| 黑人中文字幕一区二区三区| 美女图片一区二区| 欧美视频一区二区三区…| 国产深夜精品| 在线亚洲观看| 久久精品一区| 一区二区三区国产盗摄| 久久精品国产99精品国产亚洲性色 | 激情文学综合丁香| 一区二区日韩伦理片| 久久久精品视频成人| 亚洲麻豆国产自偷在线| 久久一区精品| 很黄很黄激情成人| 亚洲女性裸体视频| 亚洲日本激情| 欧美aa在线视频| 伊人色综合久久天天| 亚洲在线观看视频网站| 亚洲免费观看高清完整版在线观看| 久久深夜福利免费观看| 国内精品国产成人| 久久er99精品| 欧美亚洲自偷自偷| 国产精品日韩专区| 亚洲尤物精选| 一本色道久久综合亚洲精品不| 米奇777超碰欧美日韩亚洲| 一区二区在线视频播放| 久久综合网hezyo| 欧美一区网站| 一区二区三区在线高清| 六月天综合网| 久久久精品国产99久久精品芒果| 国产伦精品免费视频| 香蕉久久夜色精品国产| 亚洲男女自偷自拍| 国产日韩欧美在线| 久久久久久免费| 久久精品30| 亚洲激情成人网| 亚洲精品在线视频| 国产精品99一区| 香港久久久电影| 欧美一区二区三区啪啪| 国产主播精品在线| 乱码第一页成人| 欧美激情精品久久久久久大尺度| 亚洲乱码国产乱码精品精| 亚洲精品视频啊美女在线直播| 欧美日韩免费一区| 午夜精品电影| 久久精品国产亚洲一区二区三区| 韩国v欧美v日本v亚洲v| 亚洲国产精品va在线观看黑人| 欧美日本不卡视频| 一二三区精品| 亚洲国产精品一区在线观看不卡 | 欧美jjzz| 一区二区免费在线播放| 亚洲一区二区三区四区五区黄| 国产日韩欧美成人| 麻豆久久婷婷| 国产精品hd| 久久伊人免费视频| 日韩午夜在线播放| 欧美一激情一区二区三区| 亚洲国产精品精华液网站| 一区二区三区回区在观看免费视频| 海角社区69精品视频| 亚洲高清在线观看| 国产女主播一区二区| 欧美国产日韩亚洲一区| 国产精品久久久久一区二区三区 | 99国内精品久久久久久久软件| 亚洲视频免费在线| 在线不卡中文字幕| 亚洲午夜久久久久久久久电影网| 国内成+人亚洲+欧美+综合在线| 亚洲国产免费看| 国产揄拍国内精品对白| 99热这里只有精品8| 精品电影在线观看| 亚洲女性裸体视频| 日韩视频免费在线观看| 久久免费视频在线观看| 亚洲综合成人婷婷小说| 欧美大片在线观看| 美女视频一区免费观看| 国产精品亚洲第一区在线暖暖韩国| 亚洲第一精品夜夜躁人人爽 | 美女精品国产| 久久国产福利| 国产精品久久久爽爽爽麻豆色哟哟| 亚洲国产精品一区二区第四页av| 国产一区二区三区日韩| 中文精品一区二区三区| 亚洲巨乳在线| 欧美国产另类| 亚洲欧洲美洲综合色网| 亚洲电影下载| 久久久视频精品| 久久综合成人精品亚洲另类欧美| 国产精品久久久久永久免费观看| 一本久道综合久久精品| 在线一区欧美| 欧美色区777第一页| 亚洲精品乱码久久久久久日本蜜臀| 亚洲国内自拍| 欧美电影打屁股sp| 欧美成人视屏| 亚洲片在线资源| 免费日韩成人| 亚洲黄色影片| 亚洲一区二区动漫| 国产精品久久久久久久久久久久久 | 国产农村妇女精品| 亚洲视频狠狠| 久久精品视频免费| 黄网站免费久久| 美女日韩在线中文字幕| 欧美激情一区二区三区四区| 日韩网站在线看片你懂的| 欧美精品一区二区三区久久久竹菊 | 久久视频在线看| 免费成人黄色av| 亚洲国内高清视频| 欧美区一区二区三区| 日韩午夜电影| 欧美中文字幕不卡| 亚洲电影一级黄| 欧美性猛交xxxx乱大交退制版| 亚洲无限av看| 欧美freesex交免费视频| 亚洲精品国产精品国自产在线 | 欧美人与禽猛交乱配| 一区二区三区鲁丝不卡| 久久国产一区二区| 亚洲第一黄色| 欧美午夜影院| 久久精品亚洲精品| 欧美激情综合色| 午夜精品福利一区二区蜜股av| 黑人一区二区三区四区五区| 麻豆亚洲精品| 午夜精品久久久久久久白皮肤 | 欧美一级视频精品观看| 欧美a级片一区| 亚洲一区在线播放| 亚洲福利视频免费观看| 国产精品成人免费视频 | 欧美一区二区三区在线看| 亚洲国产1区| 国产精自产拍久久久久久| 欧美成人综合| 久久成人资源| 亚洲一区国产精品| 亚洲激情在线观看| 久久女同精品一区二区| 亚洲一区二区三区影院| 亚洲激情另类| 在线日韩电影| 国产伦精品一区| 欧美日韩国产a| 欧美v日韩v国产v| 欧美影视一区| 亚洲欧美另类在线观看| 亚洲乱码国产乱码精品精98午夜| 久久这里只有精品视频首页| 亚洲一区欧美| 一本色道久久综合亚洲二区三区| 国内精品久久久久伊人av|