青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

posts - 297,  comments - 15,  trackbacks - 0

Radix sort is the algorithm used by the card-sorting machines you now find only in computer museums. The cards are organized into 80 columns, and in each column a hole can be punched in one of 12 places. The sorter can be mechanically "programmed" to examine a given column of each card in a deck and distribute the card into one of 12 bins depending on which place has been punched. An operator can then gather the cards bin by bin, so that cards with the first place punched are on top of cards with the second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other two places are used for encoding nonnumeric characters.) A d-digit number would then occupy a field of d columns. Since the card sorter can look at only one column at a time, the problem of sorting n cards on a d-digit number requires a sorting algorithm.

Intuitively, one might want to sort numbers on their most significant digit, sort each of the resulting bins recursively, and then combine the decks in order. Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of the bins, this procedure generates many intermediate piles of cards that must be kept track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sorting on the least significant digit first. The cards are then combined into a single deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2 bin, and so on. Then the entire deck is sorted again on the second-least significant digit and recombined in a like manner. The process continues until the cards have been sorted on all d digits. Remarkably, at that point the cards are fully sorted on the d-digit number. Thus, only d passes through the deck are required to sort. Figure 8.3 shows how radix sort operates on a "deck" of seven 3-digit numbers.

 

Figure 8.3:
The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.

It is essential that the digit sorts in this algorithm be stable. The sort performed by a card sorter is stable, but the operator has to be wary about not changing the order of the cards as they come out of a bin, even though all the cards in a bin have the same digit in the chosen column.

In a typical computer, which is a sequential random-access machine, radix sort is sometimes used to sort records of information that are keyed by multiple fields. For example, we might wish to sort dates by three keys: year, month, and day. We could run a sorting algorithm with a comparison function that, given two dates, compares years, and if there is a tie, compares months, and if another tie occurs, compares days. Alternatively, we could sort the information three times with a stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest-order digit.

RADIX-SORT(A, d)
1  for i  1 to d
2     do use a stable sort to sort array A on digit i
Lemma 8.3
Start example

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in Θ(d(n + k)) time.

Proof The correctness of radix sort follows by induction on the column being sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable sort used as the intermediate sorting algorithm. When each digit is in the range 0 to k-1 (so that it can take on k possible values), and k is not too large, counting sort is the obvious choice. Each pass over n d-digit numbers then takes time Θ(n + k). There are d passes, so the total time for radix sort is Θ(d(n + k)).

End example

When d is constant and k = O(n), radix sort runs in linear time. More generally, we have some flexibility in how to break each key into digits.

Lemma 8.4
Start example

Given n b-bit numbers and any positive integer r b, RADIX-SORT correctly sorts these numbers in Θ((b/r)(n + 2r)) time.

Proof For a value r b, we view each key as having d = b/r digits of r bits each. Each digit is an integer in the range 0 to 2r - 1, so that we can use counting sort with k = 2r - 1. (For example, we can view a 32-bit word as having 4 8-bit digits, so that b = 32, r = 8, k = 2r - 1 = 255, and d = b/r = 4.) Each pass of counting sort takes time Θ(n + k) = Θ(n + 2r) and there are d passes, for a total running time of Θ(d(n + 2r )) = Θ((b/r)(n + 2r)).

End example

 

For given values of n and b, we wish to choose the value of r, with r b, that minimizes the expression (b/r)(n + 2r). If b < lg n, then for any value of r b, we have that (n + 2r) = Θ(n). Thus, choosing r = b yields a running time of (b/b)(n + 2b) = Θ(n), which is asymptotically optimal. If b lg n, then choosing r = lg n gives the best time to within a constant factor, which we can see as follows. Choosing r = lg n yields a running time of Θ(bn/ lg n). As we increase r above lg n, the 2r term in the numerator increases faster than the r term in the denominator, and so increasing r above lg n yields a running time of Θ(bn/ lg n). If instead we were to decrease r below lg n, then the b/r term increases and the n + 2r term remains at Θ(n).

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-sort? If b = O(lg n), as is often the case, and we choose r lg n, then radix sort's running time is Θ(n), which appears to be better than quicksort's average-case time of Θ(n lg n). The constant factors hidden in the Θ-notation differ, however. Although radix sort may make fewer passes than quicksort over the n keys, each pass of radix sort may take significantly longer. Which sorting algorithm is preferable depends on the characteristics of the implementations, of the underlying machine (e.g., quicksort often uses hardware caches more effectively than radix sort), and of the input data. Moreover, the version of radix sort that uses counting sort as the intermediate stable sort does not sort in place, which many of the Θ(n lg n)-time comparison sorts do. Thus, when primary memory storage is at a premium, an in-place algorithm such as quicksort may be preferable

 

 

 

posted on 2010-08-03 21:43 chatler 閱讀(939) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm
<2025年11月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

常用鏈接

留言簿(10)

隨筆分類(307)

隨筆檔案(297)

algorithm

Books_Free_Online

C++

database

Linux

Linux shell

linux socket

misce

  • cloudward
  • 感覺這個博客還是不錯,雖然做的東西和我不大相關(guān),覺得看看還是有好處的

network

OSS

  • Google Android
  • Android is a software stack for mobile devices that includes an operating system, middleware and key applications. This early look at the Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
  • os161 file list

overall

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            99re6这里只有精品| 亚洲欧美色婷婷| 亚洲无亚洲人成网站77777| 国产精自产拍久久久久久蜜| 欧美日韩成人精品| 美女任你摸久久| 欧美欧美午夜aⅴ在线观看| 欧美另类极品videosbest最新版本| 久久人体大胆视频| 老司机免费视频久久| 久久夜色精品| 欧美日韩午夜| 国产日韩在线看片| 99re视频这里只有精品| 亚洲午夜精品久久久久久浪潮| 亚洲欧美日韩一区| 欧美成年人视频网站欧美| 欧美国产亚洲视频| 欧美中文字幕精品| 欧美三级电影一区| 国外成人网址| 亚洲影院在线观看| 亚洲国产91精品在线观看| aa成人免费视频| 狼狼综合久久久久综合网| 国产精品乱码一区二三区小蝌蚪| 亚洲成人资源网| 久久视频国产精品免费视频在线 | 亚洲美女免费精品视频在线观看| 亚洲综合色在线| 亚洲欧洲精品一区二区三区不卡 | 久久国产精品99精品国产| 99re热精品| 亚洲精品乱码久久久久久| 亚洲第一福利视频| 老司机一区二区三区| 欧美国内亚洲| 一本色道久久99精品综合 | 亚洲女与黑人做爰| 国产精品激情电影| 午夜精品久久久久99热蜜桃导演| 亚洲人成在线观看一区二区 | 久久香蕉国产线看观看网| 国产一区二区主播在线| 久久亚洲影音av资源网| 久久精品亚洲一区| 最新中文字幕亚洲| 99精品国产一区二区青青牛奶| 欧美久久一区| 欧美在线你懂的| 麻豆精品一区二区综合av | 国产一区二区三区精品久久久| 午夜欧美理论片| 狼狼综合久久久久综合网| 久久只精品国产| 亚洲天堂视频在线观看| 亚洲一区999| 亚洲精品之草原avav久久| 亚洲一区二区三区精品在线观看 | 国产一区在线看| 99在线精品视频在线观看| 国产日韩精品一区二区三区在线| 欧美大香线蕉线伊人久久国产精品| 欧美日本韩国在线| 久久精品国产综合| 国产精品久久久久久久久久尿 | 99精品久久久| 黑人巨大精品欧美一区二区小视频 | 亚洲一区二区免费| 亚洲精品欧美精品| 免费观看日韩| 亚洲第一在线视频| 99精品国产99久久久久久福利| 鲁鲁狠狠狠7777一区二区| 久久中文在线| 狠狠综合久久av一区二区小说| 亚洲欧美日韩精品久久奇米色影视| 中文在线资源观看视频网站免费不卡| 久久综合影视| 亚洲福利视频三区| 亚洲一区二区三区四区在线观看 | 国产精品久久久久久久免费软件| 噜噜噜躁狠狠躁狠狠精品视频| 亚洲午夜视频在线观看| 亚洲欧美另类国产| 欧美精品少妇一区二区三区| 亚洲精品在线看| 性欧美暴力猛交另类hd| 韩日欧美一区| 欧美无乱码久久久免费午夜一区| 一区二区三区|亚洲午夜| 久久精品视频导航| 亚洲人体一区| 国产毛片久久| 欧美片第1页综合| 久久精品视频99| 在线视频你懂得一区| 久久另类ts人妖一区二区| 欧美日韩激情网| 在线成人免费视频| 亚洲欧美三级伦理| 亚洲国产精品电影在线观看| 午夜电影亚洲| 国产精品jizz在线观看美国| 在线观看视频欧美| 久久成年人视频| 99精品欧美一区二区三区| 亚洲另类自拍| 99国产精品久久久久久久久久 | 国内精品美女在线观看| 欧美体内谢she精2性欧美| 欧美国产乱视频| 欧美激情二区三区| 欧美成人激情在线| 欧美国产亚洲另类动漫| 欧美激情亚洲一区| 亚洲高清免费| 欧美国产免费| 亚洲丁香婷深爱综合| 亚洲高清毛片| 亚洲美女中文字幕| 在线综合亚洲| 欧美一区成人| 欧美a级片网站| 国产精品二区在线| 国语自产在线不卡| 亚洲国产精品一区制服丝袜 | 亚洲欧美国产高清va在线播| 国产乱子伦一区二区三区国色天香| 亚洲欧美日韩国产中文| 久久成人在线| 亚洲欧洲日本专区| 一区二区三区欧美日韩| 国产综合色在线视频区| 欧美激情在线观看| 国产精品推荐精品| 欧美激情视频一区二区三区不卡| 一区二区三区欧美| 男女视频一区二区| 国产在线精品二区| 亚洲女同性videos| 亚洲人成在线观看| 另类尿喷潮videofree| 国产精品香蕉在线观看| 中文av一区二区| 91久久精品国产| 蜜臀a∨国产成人精品| 一区二区在线视频| 久久激情综合网| 午夜久久电影网| 国产一区二区三区久久久| 午夜在线成人av| 亚洲电影在线免费观看| 久久er精品视频| 亚洲欧美综合| 欧美在线观看视频在线| 欧美日韩综合视频| 在线观看中文字幕不卡| 香蕉久久精品日日躁夜夜躁| 亚洲精品社区| 亚洲日本欧美日韩高观看| 欧美日一区二区在线观看| 亚洲婷婷在线| 久久成人免费电影| 一本色道久久综合狠狠躁篇怎么玩| 欧美激情2020午夜免费观看| 亚洲精选中文字幕| 欧美一级淫片播放口| 国产一区二区视频在线观看| 久久精品五月| 亚洲乱码精品一二三四区日韩在线| 一区二区久久久久久| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ入口 | 亚洲一区激情| 影音先锋在线一区| 一区二区三区三区在线| 在线高清一区| 国产综合色产在线精品| 日韩视频三区| 亚洲精品黄色| 免费欧美视频| 久久综合色天天久久综合图片| 欧美极品一区| 欧美肥婆在线| 国产亚洲精品一区二区| 亚洲九九爱视频| 一本色道久久综合狠狠躁篇的优点 | 亚洲欧美视频在线| 免费成人美女女| 久久久夜色精品亚洲| 国产日韩在线亚洲字幕中文| 中文在线资源观看网站视频免费不卡| 91久久综合| 久久理论片午夜琪琪电影网| 国产精品亚洲视频| 日韩一区二区精品| 亚洲精品美女久久7777777| 欧美成人69| 一区二区三区国产在线| 欧美三级电影精品|