• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Fourth Dimension Space

            枯葉北風寒,忽然年以殘,念往昔,語默心酸。二十光陰無一物,韶光賤,寐難安; 不畏形影單,道途阻且慢,哪曲折,如渡飛湍。斬浪劈波酬壯志,同把酒,共言歡! -如夢令

            Topcoder SRM 452 ,DIV 2 1000 HamiltonPath

            Problem Statement

                 There are N cities in a country, numbered 0 to N-1. Each pair of cities is connected by a bidirectional road.
            John plans to travel through the country using the following rules:
            • He must start in one city and end in another city after travelling exactly N-1 roads.
            • He must visit each city exactly once.
            • You are given a String[] roads. If the j-th character of the i-th element of roads is 'Y', he must travel the road that connects city i and city j.
            For example, if there are three cities, and he wants to travel the road between city 0 and city 1, there are 4 possible paths: 0->1->2, 1->0->2, 2->0->1, 2->1->0. Paths 0->2->1 and 1->2->0 are not allowed because they do not allow him to travel the road between city 0 and city 1.
            Return the number of paths he can choose, modulo 1,000,000,007.

            Definition

                
            Class: HamiltonPath
            Method: countPaths
            Parameters: String[]
            Returns: int
            Method signature: int countPaths(String[] roads)
            (be sure your method is public)
                

            Constraints

            - roads will contain between 2 and 50 elements, inclusive.
            - Each element of roads will contain n characters, where n is the number of elements in roads.
            - Each character in roads will be 'Y' or 'N'.
            - The i-th character in the i-th element of roads will be 'N'.
            - The j-th character in the i-th element of roads and the i-th character in the j-th element of roads will be equal.

            Examples

            0)
                
                                                {"NYN",
                                                "YNN",
                                                "NNN"}
            Returns: 4
            The example from the problem statement.
            1)
                
                                                {"NYYY",
                                                "YNNN",
                                                "YNNN",
                                                "YNNN"}
            Returns: 0
            It's impossible to travel all these roads while obeying the other rules.
            2)
                
                                                {"NYY",
                                                "YNY",
                                                "YYN"}
            Returns: 0
            This is also impossible.
            3)
                
                                                {"NNNNNY",
                                                "NNNNYN",
                                                "NNNNYN",
                                                "NNNNNN",
                                                "NYYNNN",
                                                "YNNNNN"}
            Returns: 24

             





            求哈密頓通路的數目,題目中指定了一些道路必須經過。
            1。做法是求連通分支,縮點,并判斷有沒有出現環或者非正常情況,若出現直接返回0。
            2。求連通分支數的全排列;
            3。遍歷所有連通分支
            4。如果該連通分支擁有的點數>=2,則結果乘以2,即可得到答案.
            求的時候要注意mod操作,要用long long 保存中間數據,(a*b)mod c中 a*b可能溢出32位整數。

            #include<iostream>
            #include
            <cmath>
            #include
            <cstdio>
            #include
            <cstring>
            #include
            <vector>
            #include
            <string>
            using namespace std;

            int graph[51][51];
            int n;
            int v[51];
            int ID[51];
            int num[51];
            int gcc=0;
            int flag=0;
            void dfs(int f,int k)
            {
                
            if(flag==1)
                    
            return;
                ID[k]
            =gcc;
                num[gcc]
            ++;
                
            int i;
                
            for(i=1;i<=n;i++)
                
            {
                    
            if(graph[k][i]&&(v[i]==1)&&(i!=f))
                    
            {
                        flag
            =1;
                        
            return;
                    }

                    
            if(graph[k][i]&&(v[i]==0))
                    
            {

                        v[i]
            =1;
                        dfs(k,i);
                    }



                }

            }



            class HamiltonPath
            {
                
            int i,j;
            public:
                
            int countPaths(vector <string> roads)
                
            {
                    n
            =roads[0].length();
                    
            for(i=0;i<n;i++)
                    
            {

                        
            for(j=0;j<=n;j++)
                        
            {

                            
            if(roads[i][j]=='Y')
                                graph[i
            +1][j+1]=1;
                        }

                    }

                    
            for(i=1;i<=n;i++)
                    
            {
                        
            if(!v[i])
                        
            {
                            v[i]
            =1;
                            gcc
            ++;
                            dfs(
            -1,i);
                        }

                    }

                    
            if(flag==1)
                        
            return 0;
                    
            int cnt=0;
                    
            for(i=1;i<=n;i++)
                    
            {
                        cnt
            =0;
                        
            for(j=1;j<=n;j++)
                        
            {

                            
            if(graph[i][j]==1)
                                cnt
            ++;
                        }

                        
            if(cnt>2)
                            
            return 0;
                    }

                    
            long long res=1;
                    
            for(i=1;i<=gcc;i++)
                    
            {

                        res
            *=i;
                        res
            %=1000000007;
                        
            if(num[i]>=2)
                        
            {
                            res
            *=2;
                            res
            %=1000000007;
                        }


                    }

                    
            return  res;
                }

            }
            ;
            第一次寫tc,寫的不好還請大家多多指點 :-)

            posted on 2009-11-06 14:35 abilitytao 閱讀(1270) 評論(1)  編輯 收藏 引用

            評論

            # re: Topcoder SRM 452 ,DIV 2 1000 HamiltonPath 2009-11-08 14:46 expter

            good...
            可以用公式過濾一些。。  回復  更多評論   

            伊人久久综合精品无码AV专区 | 久久久午夜精品| 色偷偷91久久综合噜噜噜噜| 亚洲人成无码网站久久99热国产 | 国内精品久久久久久99蜜桃| 99久久人妻无码精品系列| 九九热久久免费视频| 99久久夜色精品国产网站| 久久夜色精品国产网站| 国产成人久久777777| 亚洲国产精品综合久久网络 | 久久精品国产精品亚洲精品| 国产福利电影一区二区三区久久久久成人精品综合 | 精品国产乱码久久久久久人妻| 久久精品九九亚洲精品| 久久精品无码专区免费| 国产精品久久久久国产A级| 亚洲精品高清一二区久久 | 国产激情久久久久影院小草 | 久久久无码一区二区三区| 国内精品久久久久久久影视麻豆| 亚洲欧美成人久久综合中文网| 青青青国产精品国产精品久久久久| 99久久香蕉国产线看观香| 国产叼嘿久久精品久久| 精品熟女少妇av免费久久| 一本色综合久久| 性欧美大战久久久久久久| 国产精品成人99久久久久| 韩国无遮挡三级久久| 国产精品久久久久久吹潮| 久久久久无码精品国产| 亚洲欧美日韩久久精品第一区| 久久国产成人午夜AV影院| 国产成人精品久久亚洲高清不卡| 精品免费久久久久久久| 日韩精品久久久肉伦网站| 日韩AV无码久久一区二区 | 无遮挡粉嫩小泬久久久久久久| 久久国内免费视频| 久久亚洲AV成人无码|