排列組合
排列的定義及其計(jì)算公式:從n個(gè)不同元素中,任取m(m≤n,m與n均為自然數(shù),下同)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;
從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào) A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外規(guī)定0!=1
A(n,m) = n!/(n-m)!
從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排列起來(lái),叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列。當(dāng)m=n時(shí)所有的排列情況叫全排列。
組合的定義及其計(jì)算公式:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。用符號(hào) C(n,m) 表示。C(n,m)==A(n,m)/m!;C(n,m)=C(n,n-m)。(n>=m)
排列數(shù):
A(n,m) = n!/(n-m)!
組合數(shù):
C(n,m)=A(n,m)/m!
C(n,m)=n!/(n-m)/m!
針對(duì)一個(gè)集合n,連續(xù)子集合
E(n) = n*(1+n)/2
字知識(shí).jpg)