• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-14  評論-8  文章-0  trackbacks-0

                 題目及解題程序給在末尾,先來看看排列一個數組的方法。

                 給定一個數組 array[] = {3, 1, 2, 4, 0}; 這個給定的數組有目的性,即它符合 n * m 的規則,這里是 5 * 5(5個元素,5個連續且不同的值)。按我想到的一般的方法,就是使用循環來求出各種排列的可能,但這種方法不能確保每個元素只出現一次,且隨著元素個數的增長,循環深度將變得很深。繼續想下去,這種方法將會變得很復雜,這就要求我尋找另外一種方法。注意到每個元素并不相同,那么要使各個元素在每個位置上只出現一次,很明顯的一種方法就是“彩票機讀票法”。比如數據讀入口在第一個元素的位置,那么依次循環這個數組,每次使后面的元素向前移動一位,各個數字不就都讀到了嗎,這就像在打印機中滾動的紙。具體步驟如下:

            31240
            12403 <—rotate

                 第一位如此,那么后面的每一位也如此,也就是遞歸地處理后面的數字,每移動一位就以下一位為起點做相同的處理,直到所有數字循環了一遍,那排列的工作也就完成了。一個具體的實現如下:

            /*
             * @param r:     需要求其排列的向量
             * @param iPos:  當前所進行到的位置
             * 程序體中的注釋表示處于那個位置的向量都是一個新的且唯一的排列
            */
            void rotate(vector<int>& r, int iPos) {
            
                if(iPos == r.size() - 1)//是否循環完畢,調用函數時 iPos 置0
                    return;
            
                int iNextPos = iPos + 1;
                for(size_t i = iPos; i < r.size(); ++i) {
                    if(i == 0) {
                        //a different permutation, do something here
                    }
            
                    int t = r[iPos];
                    for(size_t j = iPos; j < r.size() - 1; ++j)//循環前移
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if(i != r.size() - 1) {
                        //a different permutation, do something here
                    }
            
                    rotate(r, iNextPos);//從下一位數字開始新的位移
                }
            }
               這種方法不要求數字式連續的,也不用事先規定好向量的長度。只是當向量長度到了一定的時候,運算時間會很長!其它方法未知……
               topcoder 上的練習題如下:

            Problem Statement

            A permutation A[0], A[1], ..., A[N-1] is a sequence containing each integer between 0 and N-1, inclusive, exactly once. Each permutation A of length N has a corresponding child array B of the same length, where B is defined as follows:
            B[0] = 0
            B[i] = A[B[i-1]], for every i between 1 and N-1, inclusive.
            A permutation is considered perfect if its child array is also a permutation.  Below are given all permutations for N=3 with their child arrays. Note that for two of these permutations ({1, 2, 0} and {2, 0, 1}) the child array is also a permutation, so these two permutations are perfect.
            Permutation        Child array
            {0, 1, 2}        {0, 0, 0}
            {0, 2, 1}        {0, 0, 0}
            {1, 0, 2}        {0, 1, 0}
            {1, 2, 0}        {0, 1, 2}
            {2, 0, 1}        {0, 2, 1}
            {2, 1, 0}        {0, 2, 0}
            You are given a vector <int> P containing a permutation of length N. Find a perfect permutation Q of the same length such that the difference between P and Q is as small as possible, and return this difference. The difference between P and Q is the number of indices i for which P[i] and Q[i] are different.
            Definition

            Class:
            PerfectPermutation
            Method:
            reorder
            Parameters:
            vector <int>
            Returns:
            int
            Method signature:
            int reorder(vector <int> P)
            (be sure your method is public)

            Constraints
            -
            P will contain between 1 and 50 elements, inclusive.
            -
            P will contain each integer between 0 and N-1, inclusive, exactly once, where N is the number of elements in P.
            Examples

            0)
            {2, 0, 1}
            Returns: 0
            P is a perfect permutation, so we can use the same permutation for Q. The difference is then 0 because P and Q are the same.

            1)
            {2, 0, 1, 4, 3}
            Returns: 2
            Q might be {2, 0, 3, 4, 1}.

            2)
            {2, 3, 0, 1}
            Returns: 2
            Q might be {1, 3, 0, 2}.

            3)
            {0, 5, 3, 2, 1, 4}
            Returns: 3

            4)
            {4, 2, 6, 0, 3, 5, 9, 7, 8, 1}
            Returns: 5

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

                我的解答如下:
            #include <iostream>
            #include <vector>
            #include <cstddef>
            #include <limits>
            #include <cassert>
            
            #include <boost\assign.hpp>    // for vector +=
            
            using namespace std;
            
            class PerfectPermutation {
            public:
                int  reorder(const vector<int>& P, vector<int>& result);
                bool isPerfect(const vector<int>& P);
            
            private:
                int  difference(const vector<int>& P, const vector<int>& Q);
                void rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out);
            };
            
            int PerfectPermutation::difference(const vector<int>& P, const vector<int>& Q) {
            
                size_t cDiff = P.size();
                assert(cDiff == Q.size());
            
                for(size_t i = 0; i < P.size(); ++i) {
                    if(P[i] == Q[i])
                        cDiff--;
                }
            
                return cDiff;
            }
            
            bool PerfectPermutation::isPerfect(const vector<int>& A) {
            
                int Bi = 0, Bi_1 = 0;
                vector<bool> vb(A.size());
                vb[0] = true;
            
                for(size_t i = 1; i < A.size(); ++i) {
                    if(vb[Bi = A[Bi_1]])
                        return false;
                    else
                        vb[Bi] = true;
            
                    Bi_1 = Bi;
                }
            
                return true;
            }
            
            void PerfectPermutation::rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out) {
            
                if(level == r.size() - 1)
                    return;
            
                int in = level + 1;
                for(size_t i = level; i < r.size(); ++i) {
                    if(i == 0 && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    int t = r[level];
                    for(size_t j = level; j < r.size() - 1; ++j)
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if((i != r.size() - 1) && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    rotate(src, r, in, nMin, out);
                }
            }
            
            int PerfectPermutation::reorder(const vector<int>& P, vector<int>& result) {
            
                if(P.size() == 1 || isPerfect(P))
                    return 0;
            
                int nMin = numeric_limits<int>::max();
            
                vector<int> Q(P);
            
                rotate(P, Q, 0, nMin, result);
            
                return nMin == numeric_limits<int>::max() ? -1 : nMin;
            }
            int main() {
            
                using namespace boost::assign;
            
                PerfectPermutation pp;
            
                vector<int> P;
                P += 2, 0, 1, 4, 3;
                vector<int> result(P.size());
            
                cout << "Is a perfect Permutation :                    " << (pp.isPerfect(P) ? "Yes" : "No") << endl;
                cout << "Difference between before reorder and after : " << pp.reorder(P, result) << endl;
                assert(pp.isPerfect(result));
                cout << "One answer might be :                         ";
                for(size_t i = 0; i < result.size(); ++i)
                    cout << result[i] << " ";
                cout << endl;
            
                return 0;
            }
            posted on 2009-12-19 20:53 崇文 閱讀(2060) 評論(0)  編輯 收藏 引用
            久久精品中文无码资源站| 亚洲精品乱码久久久久久蜜桃| 国产亚洲精品美女久久久| 一本久久a久久精品vr综合| 久久久精品人妻一区二区三区四 | 久久ZYZ资源站无码中文动漫| 人妻丰满?V无码久久不卡| 青春久久| 婷婷综合久久中文字幕| 香蕉久久夜色精品国产尤物| 无码人妻久久久一区二区三区| 99久久精品免费看国产一区二区三区 | 国产精品永久久久久久久久久| 久久久久国产一级毛片高清板| 亚洲成av人片不卡无码久久| 青青草原精品99久久精品66| 999久久久国产精品| 国产成人精品三上悠亚久久| 国内精品久久久久久麻豆| 午夜久久久久久禁播电影| 欧美与黑人午夜性猛交久久久| 77777亚洲午夜久久多人| 青青青青久久精品国产| 奇米影视7777久久精品| 欧美精品乱码99久久蜜桃| 国产高潮久久免费观看| 国产99久久精品一区二区| 久久亚洲日韩精品一区二区三区| 亚洲а∨天堂久久精品| 精品99久久aaa一级毛片| 热久久国产精品| 国产成人精品久久亚洲高清不卡 国产成人精品久久亚洲高清不卡 国产成人精品久久亚洲 | 伊人久久大香线蕉综合网站| 久久青草国产手机看片福利盒子| 久久人妻少妇嫩草AV蜜桃| 久久久精品一区二区三区| 久久本道伊人久久| 久久这里只精品国产99热 | 精品久久久久香蕉网| 综合久久精品色| 久久人人爽人人爽人人av东京热|