• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2005年12月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218086
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            具體推導看書<<數值分析>>
            code:

            #include <iostream>
            using namespace std;

            const int MAXN = 100;

            int n;
            double x[MAXN], y[MAXN]; //下標從0..n
            double alph[MAXN], beta[MAXN], a[MAXN], b[MAXN];
            double h[MAXN];
            double m[MAXN]; //各點的一階導數;

            inline 
            double sqr(double pa) {
                
            return pa * pa;
            }


            double sunc(double p, int i) {
                
            return (1 + 2 * (p - x[i]) / (x[i + 1- x[i])) * sqr((p - x[i + 1]) / (x[i + 1- x[i])) * y[i]
                        
            + (1 + 2 * (p - x[i + 1]) / (x[i] - x[i + 1])) * sqr((p - x[i]) / (x[i + 1- x[i])) * y[i + 1]
                        
            + (p - x[i]) * sqr((p - x[i + 1]) / (x[i] - x[i + 1])) * m[i]
                        
            + (p - x[i + 1]) * sqr((p - x[i]) / (x[i + 1- x[i])) * m[i + 1];
            }


            int main() {
                
            int i, j;
                
            double xx;
                freopen(
            "threeInsert.in""r", stdin);
                scanf(
            "%d"&n);
                
            for (i = 0; i <= n; i++) scanf("%lf%lf"&x[i], &y[i]);
                
            // scanf("%lf%lf", &m[0], &m[n]);
                for (i = 0; i <= n - 1; i++) h[i] = x[i + 1- x[i];
                
            //第一種邊界條件
                
            //alph[0] = 0; alph[n] = 1; beta[0] = 2 * m[0]; beta[n] = 2 * m[n];
                
            //第二種邊界條件
                alph[0= 1; alph[n] = 0; beta[0= 3 * (y[1- y[0]) / h[0]; beta[n] = 3 * (y[n] - y[n - 1/ h[n - 1]);
                
            for (i = 1; i <= n - 1; i++{
                    alph[i] 
            = h[i - 1/ (h[i - 1+ h[i]);
                    beta[i] 
            = 3 * ((1 - alph[i]) * (y[i] - y[i - 1]) / h[i - 1+ alph[i] * (y[i + 1- y[i]) / h[i]);
                }

                a[
            0= - alph[0/ 2; b[0= beta[0/ 2;
                
            for (i = 1; i <= n; i++{
                    a[i] 
            = - alph[i] / (2 + (1 - alph[i]) * a[i - 1]);
                    b[i] 
            = (beta[i] - (1 - alph[i]) * b[i - 1]) / (2 + (1 - alph[i]) * a[i - 1]);
                }

                m[n 
            + 1= 0;
                
            for (i = n; i >= 0; i--{
                    m[i] 
            = a[i] * m[i + 1+ b[i];
                }

                scanf(
            "%lf"&xx);
                
            for (i = 0; i < n; i++{
                    
            if (xx >= x[i] && xx <= x[i + 1]) break;
                }

                printf(
            "%lf\n", sunc(xx, i));
                
            return 0;
            }
             
            posted @ 2007-10-20 13:07 豪 閱讀(3564) | 評論 (4)編輯 收藏
            Sailboat

            Problem H: Sailboat

            In the sailboat race, the contestant is requested to along with the prearrange path. Sailing ship's power comes from wind power and contestant's manpower. The wind power can completely used.

            In a competition, the contestants are requested to along with a 1/4 circles with radius R, the sailboat will goto east from south. During this process, the wind direction is straight from west to the east with constant speed and power.

            In order to maintain the travel direction, the athlete must adjust the sail to the vertical angle from movement direction in any time.

            If the speed of sailboat is proportional to the power at movement direction, the proportional factor is k. Supposes the wind power is f, the athlete manpower is h, please given the time of sailboat from the beginning to the end.

            Input

            The first line of each case consists of 4 double number, that is radius of path: R, wind power: f,athlete manpower: h and proportional factor:k. In order to avoid the floating point error, you needn't output the answer directly. The next line is a integer n, the following n lines gives a double value which is candidate answer.

            Output

            For each candidate of each case, Only "Yes" or "No" should be printed. Output "Yes" if the relative error to your answer is less than 3%, otherwise "No". For example, if the model answer is 100, and the candidate is 98 or 102, you should output "Yes". Output one blank line between neighboring case

            Sample Input

            1.0 2.0 1.0 1.0
            2
            0.35
            0.76
            

            Sample Output

            No
            Yes
            

            Problem Source: provided by skywind

            #include <iostream>
            #include 
            <cmath>
            using namespace std;

            const int MAXN = 100;
            const double PI = acos(-1.0);

            double R, F, H, K, ans;
            int n, cas;

            double func(double x) {
                
            return R / K / (H + F * cos(x));
            }


            double romberg(double a, double b, double EPS = 1e-6{
                
            double t[MAXN][MAXN] = {0}, tmp;
                
            int i, j, k, k2, m, m4;
                t[
            0][0= (func(a) + func(b)) * (b - a) / 2;
                k 
            = 1; k2 = 1;
                
            while (1{
                    tmp  
            = 0;
                    
            for (i = 1; i <= k2; i++{
                        tmp 
            += func(a + (2 * i - 1* (b - a) / (2 * k2));
                    }

                    t[
            0][k] = (t[0][k - 1+ tmp * (b - a) / k2) / 2;
                    
            for (m = 1, m4=4; m <= k; m++, m4 *= 4{
                        t[m][k 
            - m] = (m4 * t[m - 1][k - m + 1- t[m - 1][k - m]) / (m4 - 1);
                    }

                    
            if (fabs(t[k][0- t[k - 1][0]) < EPS) break;
                    k
            ++; k2 *= 2;
                }

                
            return t[k][0];
            }


            void solve() {
                
            double tmp;
                scanf(
            "%lf"&tmp);
                
            if (fabs(tmp - ans) / ans < 0.03) printf("Yes\n");
                
            else printf("No\n");
            }


            int main() {
                freopen(
            "2457.in""r", stdin);
                
            while (scanf("%lf%lf%lf%lf%d"&R, &F, &H, &K, &n) != EOF) {
                    
            if (cas) printf("\n");
                    
            else cas++;
                    ans 
            = romberg(0, PI/2);
                    
            while (n--{
                        solve();
                    }

                }

                
            return 0;
            }
            posted @ 2007-10-20 01:02 豪 閱讀(692) | 評論 (0)編輯 收藏

            Easy Problem

            Time limit:1000 ms   Memory limit:65536 KB
            Total Submit:1755 (462 users)   Accepted Submit:366 (332 users)

            Description

            In this problem, you're to calculate the distance between a point P(xp, yp, zp) and a segment (x1, y1, z1) − (x2, y2, z2), in a 3D space, i.e. the minimal distance from P to any point Q(xq, yq, zq) on the segment (a segment is part of a line).

            Input

            The first line contains a single integer T (1 ≤ T ≤ 1000), the number of test cases. Each test case is a single line containing 9 integers xp, yp, zp, x1, y1, z1, x2, y2, z2. These integers are all in [-1000,1000].

            Output

            For each test case, print the case number and the minimal distance, to two decimal places.

            Sample Input

            3
            0 0 0 0 1 0 1 1 0
            1 0 0 1 0 1 1 1 0
            -1 -1 -1 0 1 0 -1 0 -1

            Sample Output

            Case 1: 1.00
            Case 2: 0.71
            Case 3: 1.00

            Problem Source

            The 32nd ACM-ICPC Beijing First Round Internet Contest

            其實和二分差不多,劃個函數曲線出來,分三段,比劃一下就很容易理解了:)

            #include <iostream>
            #include 
            <cmath>
            using namespace std;

            double dist(double l[], double r[]) {
                
            return sqrt((l[0]-r[0])*(l[0]-r[0])+(l[1]-r[1])*(l[1]-r[1])+(l[2]-r[2])*(l[2]-r[2]));
            }


            int main() {
               
            // freopen("1024.in", "r", stdin);
                int n, cas=0;
                
            double l[3], r[3], p[3], p1[3], p2[3], d1, d2;
                scanf(
            "%d"&n);
                
            while (n--{
                    scanf(
            "%lf%lf%lf%lf%lf%lf%lf%lf%lf"&p[0], &p[1], &p[2], &l[0], &l[1], &l[2], &r[0], &r[1], &r[2]);
                    
            while (dist(l, r) > 1e-4{
                        p1[
            0= (l[0+ r[0]) / 2;
                        p1[
            1= (l[1+ r[1]) / 2;
                        p1[
            2= (l[2+ r[2]) / 2;
                        p2[
            0= (r[0+ p1[0]) / 2;
                        p2[
            1= (r[1+ p1[1]) / 2;
                        p2[
            2= (r[2+ p1[2]) / 2;
                        d1 
            = dist(p1, p); d2 = dist(p2, p);
                        
            if (d2 >= d1) {
                            r[
            0= p2[0]; r[1= p2[1]; r[2= p2[2];
                        }
             else {
                            l[
            0= p1[0]; l[1= p1[1]; l[2= p1[2];
                        }

                    }

                    printf(
            "Case %d: %.2lf\n"++cas, dist(p,l));
                }

            }

            posted @ 2007-10-18 11:00 豪 閱讀(1206) | 評論 (0)編輯 收藏
            昨晚去圖書館看了《計算機圖形學——OpenGL實現》關于Bresenham算法的另一種推導方式。
            Bresenham最精妙之處在于通過方程變換,然后得到迭代方程,從而消除了浮點運算。

            下面簡單寫寫自己對中點法推導的理解:

            記:W = bx - ax, H = by - ay
                     所以 (ax, ay)和(bx, by)的理想直線為:
                     -W*(y-ay) + H*(x-ax) = 0

            記:函數 f(x, y) = -2*W*(y-ay) + 2*H*(x-ax);
                     f(x,y)有如下性質:
                     f(x, y) < 0, 那么(x, y)在直線上方
                     f(x, y) > 0, 那么(x, y)在直線下方

            現考慮 點L(Px+1, Py), 點U(Px+1, Py+1), 則LU中點M(Px+1, Py+1/2) 有:
                     如果f(Mx, My) < 0, 則M在理想直線上方, 所以選擇L
                     如果f(Mx, My) > 0, 則M在理想直線下方, 所以選擇U
            則:
                     f(Mx,My) = -2*w*(Py+1/2-ay) + 2*H*(Px+1-ax)
            當 x從Px+1移動到Px+2時, 考慮f變化M'和M'':
                     M':在前一步沒有增加y, M' = (Px+2, Py+1/2)
                     M'':在前一步增加了y, M' = (Px+2, Py+3/2)
            對于 M':
                     f(M'x, M'y) = -2*w*(Py+1/2-ay) + 2*H*(Px+2-ax) = f(Mx, My) + 2 * H
            對于 M'':
                     f(M''x, M''y) = -2*w*(Py+3/2-ay) + 2*H*(Px+2-ax) = f(Mx, My) - 2 * (W-H)
            所以
                     對于下一個“測試量”都有一個常數增量:前一次沒有增加y,增量為2*H,如果增加了y,則增量為-2*(W-H)

            對于初始條件:x = ax, y = ay
                     M = (ax+1, ay+1/2);
                     f(Mx, My) = -2*W*(ay+1/2-ay) + 2*H(ax+1-ax) = 2*H-W

            Code:
            #include <stdlib.h>
            #include 
            <math.h>
            #include 
            <GL/glut.h>

            void myInit() {
                glClearColor(
            1.01.01.00.0);
                glColor3f(
            0.00.00.0);
                
            //glPointSize(2.0);
                glMatrixMode(GL_PROJECTION);
                glLoadIdentity();
                gluOrtho2D(
            0.0640.00.0480.0);
            }


            void setPixel(int x, int y) {
                glBegin(GL_POINTS);
                glVertex2i(x, y);
                glEnd();

            }


            void lineBres(int xs, int ys, int xe, int ye) {
                
            int W = xe - xs, H = ye - ys, f = 2 * H - W, tH = 2 * H, tHW = 2 * (H - W);
                
            int x, y;
                
            if (xs > xe) {
                    x 
            = xe;
                    y 
            = ye;
                    xe 
            = xs;
                }
             else {
                    x 
            = xs;
                    y 
            = ys;            
                }

                
            while (x <= xe) {
                    setPixel(x, y);
                    x
            ++;
                    
            if (f<0{
                        f 
            += tH;
                    }
             else {
                        y
            ++;
                        f 
            += tHW;
                    }

                }

            }


            void myDisplay() {
                glClear(GL_COLOR_BUFFER_BIT);
                lineBres(
            2010300180);
                glFlush();
            }


            int main(int argc, char **argv) {
                glutInit(
            &argc, argv);
                glutInitDisplayMode(GLUT_SINGLE
            |GLUT_RGB);
                glutInitWindowSize(
            640480);
                glutInitWindowPosition (
            100150);
                glutCreateWindow(
            "Bresenham畫線");
                glutDisplayFunc(myDisplay);
                myInit();
                glutMainLoop();
                
            return 0;
            }

                     
            posted @ 2007-10-11 11:57 豪 閱讀(1151) | 評論 (0)編輯 收藏
            擴展了一點,有興趣的可以去看看,MFC去,sigh~
            http://m.shnenglu.com/qywyh/articles/32740.html
            posted @ 2007-09-23 21:34 豪 閱讀(1417) | 評論 (0)編輯 收藏
            僅列出標題
            共18頁: 1 2 3 4 5 6 7 8 9 Last 
            精品伊人久久大线蕉色首页| 色综合色天天久久婷婷基地| 日本强好片久久久久久AAA| 99久久99久久久精品齐齐| 99热精品久久只有精品| 亚洲va中文字幕无码久久不卡| 女人香蕉久久**毛片精品| 久久久久久久精品妇女99| 国产精品成人久久久久三级午夜电影| 亚洲精品WWW久久久久久| 丰满少妇人妻久久久久久| 久久亚洲国产最新网站| 91精品婷婷国产综合久久| 久久亚洲中文字幕精品有坂深雪| 久久影视综合亚洲| 久久综合中文字幕| 国产午夜福利精品久久2021| 亚洲中文字幕无码久久精品1| 久久亚洲国产成人精品无码区| 国产精品一久久香蕉产线看 | 久久国产成人亚洲精品影院| 久久精品国产亚洲欧美| 午夜精品久久久久久99热| 久久人妻无码中文字幕| 久久午夜免费视频| 国产69精品久久久久APP下载 | 精品无码久久久久国产| 99精品国产99久久久久久97 | 久久久久久国产精品无码下载| 久久丝袜精品中文字幕| 久久国产V一级毛多内射| 久久久久无码专区亚洲av| 久久久久综合国产欧美一区二区| 国产精品久久久久久久午夜片| 久久天堂电影网| 久久久精品人妻无码专区不卡| 久久午夜无码鲁丝片午夜精品| 亚洲欧美日韩久久精品| 国产毛片欧美毛片久久久| 国产精品美女久久久m| 伊人色综合久久天天|