青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

隨筆 - 87  文章 - 279  trackbacks - 0
<2025年11月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

潛心看書研究!

常用鏈接

留言簿(19)

隨筆分類(81)

文章分類(89)

相冊

ACM OJ

My friends

搜索

  •  

積分與排名

  • 積分 - 220431
  • 排名 - 118

最新評論

閱讀排行榜

評論排行榜


1:查看CPU負載--mpstat
mpstat -P ALL [internal [count]]

參數的含義如下:
-P ALL 表示監(jiān)控所有CPU
internal 相鄰的兩次采樣的間隔時間
count 采樣的次數

mpstat命令從/proc/stat獲得數據輸出
輸出的含義如下:


CPU 處理器ID
user 在internal時間段里,用戶態(tài)的CPU時間(%) ,不包含 nice值為負 進程 ?usr/?total*100
nice 在internal時間段里,nice值為負進程的CPU時間(%) ?nice/?total*100
system 在internal時間段里,核心時間(%) ?system/?total*100
iowait 在internal時間段里,硬盤IO等待時間(%) ?iowait/?total*100
irq 在internal時間段里,軟中斷時間(%) ?irq/?total*100
soft 在internal時間段里,軟中斷時間(%) ?softirq/?total*100
idle 在internal時間段里,CPU除去等待磁盤IO操作外的因為任何原因而空閑的時間閑置時間 (%) ?idle/?total*100

intr/s 在internal時間段里,每秒CPU接收的中斷的次數 ?intr/?total*100
CPU總的工作時間total_cur=user+system+nice+idle+iowait+irq+softirq

total_pre=pre_user+ pre_system+ pre_nice+ pre_idle+ pre_iowait+ pre_irq+ pre_softirq
user=user_cur – user_pre
total=total_cur-total_pre

其中_cur 表示當前值,_pre表示interval時間前的值。上表中的所有值可取到兩位小數點。

2:查看磁盤io情況及CPU負載--vmstat
usage: vmstat [-V] [-n] [delay [count]]
              -V prints version.
              -n causes the headers not to be reprinted regularly.
              -a print inactive/active page stats.
              -d prints disk statistics
              -D prints disk table
              -p prints disk partition statistics
              -s prints vm table
              -m prints slabinfo
              -S unit size
              delay is the delay between updates in seconds. 
              unit size k:1000 K:1024 m:1000000 M:1048576 (default is K)
              count is the number of updates.

vmstat從/proc/stat獲得數據

輸出的含義如下: 
FIELD DESCRIPTION FOR VM MODE
   Procs
       r: The number of processes waiting for run time.
       b: The number of processes in uninterruptible sleep.

   Memory
       swpd: the amount of virtual memory used.
       free: the amount of idle memory.
       buff: the amount of memory used as buffers.
       cache: the amount of memory used as cache.
       inact: the amount of inactive memory. (-a option)
       active: the amount of active memory. (-a option)

   Swap
       si: Amount of memory swapped in from disk (/s).
       so: Amount of memory swapped to disk (/s).

   IO
       bi: Blocks received from a block device (blocks/s).
       bo: Blocks sent to a block device (blocks/s).

   System
       in: The number of interrupts per second, including the clock.
       cs: The number of context switches per second.

   CPU
       These are percentages of total CPU time.
       us: Time spent running non-kernel code. (user time, including nice time)
       sy: Time spent running kernel code. (system time)
       id: Time spent idle. Prior to Linux 2.5.41, this includes IO-wait time.
       wa: Time spent waiting for IO. Prior to Linux 2.5.41, shown as zero.
       st: Time spent in involuntary wait. Prior to Linux 2.6.11, shown as zero.

3:查看內存使用情況--free
usage: free [-b|-k|-m|-g] [-l] [-o] [-t] [-s delay] [-c count] [-V]
  -b,-k,-m,-g show output in bytes, KB, MB, or GB
  -l show detailed low and high memory statistics
  -o use old format (no -/+buffers/cache line)
  -t display total for RAM + swap
  -s update every [delay] seconds
  -c update [count] times
  -V display version information and exit

[root@Linux /tmp]# free

            total     used        free       shared    buffers   cached
Mem:       255268    238332      16936         0        85540   126384
-/+ buffers/cache:   26408       228860 
Swap:      265000      0         265000

Mem:表示物理內存統(tǒng)計 
-/+ buffers/cached:表示物理內存的緩存統(tǒng)計 
Swap:表示硬盤上交換分區(qū)的使用情況,這里我們不去關心。
系統(tǒng)的總物理內存:255268Kb(256M),但系統(tǒng)當前真正可用的內存b并不是第一行free 標記的 16936Kb,它僅代表未被分配的內存。

第1行  Mem:
total:表示物理內存總量。 
used:表示總計分配給緩存(包含buffers 與cache )使用的數量,但其中可能部分緩存并未實際使用。 
free:未被分配的內存。 
shared:共享內存,一般系統(tǒng)不會用到,這里也不討論。 
buffers:系統(tǒng)分配但未被使用的buffers 數量。 
cached:系統(tǒng)分配但未被使用的cache 數量。buffer 與cache 的區(qū)別見后面。 
total = used + free    
第2行   -/+ buffers/cached:
used:也就是第一行中的used - buffers-cached   也是實際使用的內存總量。 
free:未被使用的buffers 與cache 和未被分配的內存之和,這就是系統(tǒng)當前實際可用內存。
free 2= buffers1 + cached1 + free1   //free2為第二行、buffers1等為第一行

buffer 與cache 的區(qū)別
A buffer is something that has yet to be "written" to disk. 
A cache is something that has been "read" from the disk and stored for later use
第3行:
對操作系統(tǒng)來講是Mem的參數.buffers/cached 都是屬于被使用,所以它認為free只有16936.
對應用程序來講是(-/+ buffers/cach).buffers/cached 是等同可用的,因為buffer/cached是為了提高文件讀取的性能,當應用程序需在用到內存的時候,buffer/cached會很快地被回收。
所以從應用程序的角度來說,可用內存=系統(tǒng)free memory+buffers+cached.

swap
swap就是LINUX下的虛擬內存分區(qū),它的作用是在物理內存使用完之后,將磁盤空間(也就是SWAP分區(qū))虛擬成內存來使用.

4:查看網卡情況--sar
詳細見man
4.1:查看網卡流量:sar -n DEV delay count 
服務器網卡最大能承受流量由網卡本身決定,分為10M、10/100自適應、100+以及1G網卡,一般普通服務器用的是百兆,也有用千兆的。

輸出解釋:
IFACE
       Name of the network interface for which statistics are reported.

rxpck/s
       Total number of packets received per second.

txpck/s
       Total number of packets transmitted per second.

rxbyt/s
       Total number of bytes received per second.

txbyt/s
       Total number of bytes transmitted per second.

rxcmp/s
       Number of compressed packets received per second (for cslip etc.).

txcmp/s
       Number of compressed packets transmitted per second.

rxmcst/s
       Number of multicast packets received per second.

4.2:查看網卡失敗情況:sar -n EDEV delay count 
輸出解釋:
IFACE
       Name of the network interface for which statistics are reported.

rxerr/s
       Total number of bad packets received per second.

txerr/s
       Total number of errors that happened per second while transmitting packets.

coll/s
       Number of collisions that happened per second while transmitting packets.

rxdrop/s
       Number of received packets dropped per second because of a lack of space in linux buffers.

txdrop/s
       Number of transmitted packets dropped per second because of a lack of space in linux buffers.

txcarr/s
       Number of carrier-errors that happened per second while transmitting packets.

rxfram/s
       Number of frame alignment errors that happened per second on received packets.

rxfifo/s
       Number of FIFO overrun errors that happened per second on received packets.

txfifo/s
       Number of FIFO overrun errors that happened per second on transmitted packets.


5:定位問題進程--top, ps
top -d delay,詳細見man
ps aux 查看進程詳細信息
ps axf 查看進程樹

6:查看某個進程與文件關系--losf
需要root權限才能看到全部,否則只能看到登錄用戶權限范圍內的內容

lsof -p 77//查看進程號為77的進程打開了哪些文件
lsof -d 4//顯示使用fd為4的進程 
lsof abc.txt//顯示開啟文件abc.txt的進程
lsof -i :22//顯示使用22端口的進程
lsof -i tcp//顯示使用tcp協(xié)議的進程
lsof -i tcp:22//顯示使用tcp協(xié)議的22端口的進程
lsof +d /tmp//顯示目錄/tmp下被進程打開的文件
lsof +D /tmp//同上,但是會搜索目錄下的目錄,時間較長
lsof -u username//顯示所屬user進程打開的文件

7:查看程序運行情況--strace
usage: strace [-dffhiqrtttTvVxx] [-a column] [-e expr] ... [-o file]
              [-p pid] ... [-s strsize] [-u username] [-E var=val] ...
              [command [arg ...]]
   or: strace -c [-e expr] ... [-O overhead] [-S sortby] [-E var=val] ...
              [command [arg ...]]

常用選項:
-f:除了跟蹤當前進程外,還跟蹤其子進程。
-c:統(tǒng)計每一系統(tǒng)調用的所執(zhí)行的時間,次數和出錯的次數等. 
-o file:將輸出信息寫到文件file中,而不是顯示到標準錯誤輸出(stderr)。
-p pid:綁定到一個由pid對應的正在運行的進程。此參數常用來調試后臺進程。

8:查看磁盤使用情況--df
test@wolf:~$ df
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/sda1              3945128   1810428   1934292  49% /
udev                    745568        80    745488   1% /dev
/dev/sda3             12649960   1169412  10837948  10% /usr/local
/dev/sda4             63991676  23179912  37561180  39% /data

9:查看網絡連接情況--netstat
常用:netstat -lpn
選項說明:
 -p, --programs           display PID/Program name for sockets
 -l, --listening          display listening server sockets
 -n, --numeric            don't resolve names
 -a, --all, --listening   display all sockets (default: connected)
posted @ 2010-11-21 12:25 豪 閱讀(1392) | 評論 (1)編輯 收藏
Notes:
*. Time, Clocks and the Ordering of Events in a Distributed System" (1978)
    1. The issue is that in a distributed system you cannot tell if event A happened before event B, unless A caused B in some way. Each observer can see events happen in a different order, except for events that cause each other, ie there is only a partial ordering of events in a distributed system.
    2. Lamport defines the "happens before" relationship and operator, and goes on to give an algorithm that provides a total ordering of events in a distributed system, so that each process sees events in the same order as every other process.
    3. Lamport also introduces the concept of a distributed state machine: start a set of deterministic state machines in the same state and then make sure they process the same messages in the same order.
    4. Each machine is now a replica of the others. The key problem is making each replica agree what is the next message to process: a consensus problem.
    5. However, the system is not fault tolerant; if one process fails that others have to wait for it to recover.

*.  "Notes on Database Operating Systems" (1979).
    1. 2PC problem: Unfortunately 2PC would block if the TM (Transaction Manager) fails at the wrong time.

*.  "NonBlocking Commit Protocols" (1981)
    1. 3PC problem: The problem was coming up with a nice 3PC algorithm, this would only take nearly 25 years!

*. "Impossibility of distributed consensus with one faulty process" (1985)
    1. this famous result is known as the "FLP" result
    2. By this time "consensus" was the name given to the problem of getting a bunch of processors to agree a value.
    3. The kernel of the problem is that you cannot tell the difference between a process that has stopped and one that is running very slowly, making dealing with faults in an asynchronous system almost impossible.
    4. a distributed algorithm has two properties: safety and liveness. 2PC is safe: no bad data is ever written to the databases, but its liveness properties aren't great: if the TM fails at the wrong point the system will block.
    5. The asynchronous case is more general than the synchronous case: an algorithm that works for an asynchronous system will also work for a synchronous system, but not vice versa.

*.  "The Byzantine Generals Problem" (1982)
    1. In this form of the consensus problem the processes can lie, and they can actively try to deceive other processes.

*.  "A Comparison of the Byzantine Agreement Problem and the Transaction Commit Problem." (1987) .
    1. At the time the best consensus algorithm was the Byzantine Generals, but this was too expensive to use for transactions.

*.  "Uniform consensus is harder than consensus" (2000)
    1. With uniform consensus all processes must agree on a value, even the faulty ones - a transaction should only commit if all RMs are prepared to commit.
   
*.  "The Part-Time Parliament" (submitted in 1990, published 1998)
    1. Paxos consensus algorithm
   
*.  "How to Build a Highly Availability System using Consensus" (1996).
    1. This paper provides a good introduction to building fault tolerant systems and Paxos.

*.  "Paxos Made Simple (2001)
    1. The kernel of Paxos is that given a fixed number of processes, any majority of them must have at least one process in common. For example given three processes A, B and C the possible majorities are: AB, AC, or BC. If a decision is made when one majority is present eg AB, then at any time in the future when another majority is available at least one of the processes can remember what the previous majority decided. If the majority is AB then both processes will remember, if AC is present then A will remember and if BC is present then B will remember.
    2. Paxos can tolerate lost messages, delayed messages, repeated messages, and messages delivered out of order.
    3. It will reach consensus if there is a single leader for long enough that the leader can talk to a majority of processes twice. Any process, including leaders, can fail and restart; in fact all processes can fail at the same time, the algorithm is still safe. There can be more than one leader at a time.
    4. Paxos is an asynchronous algorithm; there are no explicit timeouts. However, it only reaches consensus when the system is behaving in a synchronous way, ie messages are delivered in a bounded period of time; otherwise it is safe. There is a pathological case where Paxos will not reach consensus, in accordance to FLP, but this scenario is relatively easy to avoid in practice.

*.   "Consensus in the presence of partial synchrony" (1988)
    1. There are two versions of partial synchronous system: in one processes run at speeds within a known range and messages are delivered in bounded time but the actual values are not known a priori; in the other version the range of speeds of the processes and the upper bound for message deliver are known a priori, but they will only start holding at some unknown time in the future.
    2. The partial synchronous model is a better model for the real world than either the synchronous or asynchronous model; networks function in a predicatable way most of the time, but occasionally go crazy.
   
*.   "Consensus on Transaction Commit" (2005).
    1. A third phase is only required if there is a fault, in accordance to the Skeen result. Given 2n+1 TM replicas Paxos Commit will complete with up to n faulty replicas.
    2. Paxos Commit does not use Paxos to solve the transaction commit problem directly, ie it is not used to solve uniform consensus, rather it is used to make the system fault tolerant.
    3.  Recently there has been some discussion of the CAP conjecture: Consistency, Availability and Partition. The conjecture asserts that you cannot have all three in a distributed system: a system that is consistent, that can have faulty processes and that can handle a network partition.
    4. Now take a Paxos system with three nodes: A, B and C. We can reach consensus if two nodes are working, ie we can have consistency and availability. Now if C becomes partitioned and C is queried, it cannot respond because it cannot communicate with the other nodes; it doesn't know whether it has been partitioned, or if the other two nodes are down, or if the network is being very slow. The other two nodes can carry on, because they can talk to each other and they form a majority. So for the CAP conjecture, Paxos does not handle a partition because C cannot respond to queries. However, we could engineer our way around this. If we are inside a data center we can use two independent networks (Paxos doesn't mind if messages are repeated). If we are on the internet, then we could have our client query all nodes A, B and C, and if C is partitioned the client can query A or B unless it is partitioned in a similar way to C.
    5. a synchronous network, if C is partitioned it can learn that it is partitioned if it does not receive messages in a fixed period of time, and thus can declare itself down to the client.

*.   "Co-Allocation, Fault Tolerance and Grid Computing" (2006).


[REF] http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html
posted @ 2010-08-12 23:37 豪 閱讀(1663) | 評論 (0)編輯 收藏

A "wait-free" procedure can complete in a finite number of steps, regardless of the relative speeds of other threads.

A "lock-free" procedure guarantees progress of at least one of the threads executing the procedure. That means some threads can be delayed arbitrarily, but it is guaranteed that at least one thread makes progress at each step.

CAS:assuming the map hasn't changed since I last looked at it, copy it. Otherwise, start all over again.

Delay Update:In plain English, the loop says "I'll replace the old map with a new, updated one, and I'll be on the lookout for any other updates of the map, but I'll only do the replacement when the reference count of the existing map is one." 


[REF]http://www.drdobbs.com/cpp/184401865
posted @ 2010-07-20 16:58 豪 閱讀(844) | 評論 (0)編輯 收藏


1.      Interactive games are write-heavy. Typical web apps read more than they write so many common architectures may not be sufficient. Read heavy apps can often get by with a caching layer in front of a single database. Write heavy apps will need to partition so writes are spread out and/or use an in-memory architecture.

2.    Design every component as a degradable service. Isolate components so increased latencies in one area won't ruin another. Throttle usage to help alleviate problems. Turn off features when necessary.

3.    Cache Facebook data. When you are deeply dependent on an external component consider caching that component's data to improve latency.

4.    Plan ahead for new release related usage spikes.

5.      Sample. When analyzing large streams of data, looking for problems for example, not every piece of data needs to be processed. Sampling data can yield the same results for much less work.


The key ideas are to isolate troubled and highly latent services from causing latency and performance issues elsewhere through use of error and timeout throttling, and if needed, disable functionality in the application using on/off switches and functionality based throttles.

posted @ 2010-07-16 15:06 豪 閱讀(897) | 評論 (1)編輯 收藏
1.如果是非引用賦值,用于賦值的變量指向的zval的is_ref=0,則直接指向,refcount++;若zval的is_ref=1,則copy on write,原zval refcount不變, 新變量指向一個新的zval,is_ref=0, refcount=1;

2.如果是引用賦值,用于復制的變量指向的zval的is_ref=0,則copy on write,原zval refcount--,新變量和引用變量同時指向新的zval,is_ref=1,refcount=2; 若zval的is_ref=1,則直接指向,refcount++;

posted @ 2010-05-18 22:45 豪 閱讀(1169) | 評論 (0)編輯 收藏
僅列出標題
共18頁: 1 2 3 4 5 6 7 8 9 Last 
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久精品一区二区国产| 夜夜狂射影院欧美极品| 国产视频亚洲精品| 亚洲免费观看在线观看| 蜜臀av国产精品久久久久| 欧美亚洲三级| 国产精品福利在线观看| 亚洲视频自拍偷拍| 日韩视频在线免费观看| 欧美日韩免费观看一区=区三区 | 亚洲日本va在线观看| 欧美一区免费视频| 亚洲欧美日本在线| 国产精品一区三区| 欧美影院在线| 久久精品人人| 激情综合中文娱乐网| 久久婷婷一区| 媚黑女一区二区| 亚洲乱码视频| 99re热精品| 国产精品久久久久av免费| 亚洲欧美日韩在线| 亚洲欧美成人一区二区在线电影| 国产女精品视频网站免费| 久久蜜桃精品| 欧美极品在线视频| 欧美亚洲免费高清在线观看| 欧美在线视频观看| 亚洲国产一成人久久精品| 亚洲七七久久综合桃花剧情介绍| 欧美精品乱码久久久久久按摩| 一区二区免费在线观看| 亚洲综合999| 亚洲国产mv| 亚洲视频1区| 亚洲电影av| 亚洲午夜成aⅴ人片| 激情一区二区三区| 一区二区av在线| 精品成人a区在线观看| 亚洲日本在线观看| 国产视频精品免费播放| 欧美国产欧美亚洲国产日韩mv天天看完整| 免费在线观看日韩欧美| 亚洲一级片在线观看| 西西人体一区二区| 亚洲人成精品久久久久| 亚洲欧美一级二级三级| 91久久亚洲| 午夜影院日韩| 一区二区三区欧美亚洲| 久久精品国产96久久久香蕉| 99精品久久久| 久久久久**毛片大全| 亚洲一级片在线观看| 久久亚洲捆绑美女| 欧美在线播放高清精品| 欧美日韩ab| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美日韩精品中文字幕| 免费不卡中文字幕视频| 亚洲一区美女视频在线观看免费| 狠狠色综合色区| 亚洲视频久久| 99精品欧美一区二区三区综合在线| 欧美中文字幕精品| 亚洲欧美国产制服动漫| 欧美精品一区二区三区在线看午夜 | 久久综合九色综合网站| 欧美性生交xxxxx久久久| 亚洲国产精品成人| 韩国欧美国产1区| 亚洲欧美视频一区| 性色av一区二区三区红粉影视| 欧美日韩www| 亚洲精品日韩久久| 亚洲精品日韩精品| 欧美成人精品在线观看| 欧美国产高清| 亚洲欧洲日本mm| 久久先锋资源| 欧美成人国产一区二区| 在线日韩精品视频| 久久亚洲色图| 欧美激情第五页| 亚洲欧洲日产国产综合网| 鲁鲁狠狠狠7777一区二区| 欧美不卡高清| 亚洲人屁股眼子交8| 欧美ed2k| 亚洲人成7777| 亚洲视频www| 欧美视频官网| 夜夜夜久久久| 欧美亚洲视频在线观看| 国产美女精品一区二区三区| 亚洲欧美日韩一区二区三区在线观看| 亚洲欧美文学| 国产日韩欧美综合精品| 午夜亚洲福利| 久久亚洲一区二区三区四区| 樱桃视频在线观看一区| 免费欧美网站| 一区二区日本视频| 欧美在线免费| 亚洲国产成人一区| 欧美精品 日韩| 一区二区三区四区五区精品视频| 亚洲自拍三区| 国产自产v一区二区三区c| 久久综合狠狠综合久久综青草| 欧美国产高清| 亚洲影视在线| 精久久久久久| 欧美日韩专区| 欧美在线国产| 亚洲精品久久久久久下一站 | 亚洲电影毛片| 欧美午夜电影完整版| 久久大香伊蕉在人线观看热2| 亚洲国产精品久久久久秋霞蜜臀 | 99国产麻豆精品| 欧美一区二区三区电影在线观看| 精品福利av| 欧美视频免费看| 久久人91精品久久久久久不卡 | 国产精品高潮久久| 久久成人精品一区二区三区| 欧美激情1区2区| 一区二区三区四区精品| 国产精品亚洲аv天堂网| 欧美xart系列在线观看| 亚洲欧美日韩一区在线观看| 亚洲美女av黄| 老司机精品导航| 亚洲国产成人午夜在线一区 | 欧美在线关看| 亚洲国产精品一区二区第一页| 午夜影院日韩| 欧美精品亚洲| 日韩一级精品视频在线观看| 欧美激情亚洲激情| 国产精品久久久久久久久久妞妞 | 激情综合色综合久久综合| 久久久久久69| 欧美视频在线免费看| av成人免费| 亚洲激情第一区| 欧美在线三级| 亚洲精品一二区| 久久精品人人做人人综合| 欧美黑人多人双交| 久久黄色网页| 亚洲线精品一区二区三区八戒| 久久伊人精品天天| 中文一区二区| 亚洲视频观看| 在线免费日韩片| 狠狠久久五月精品中文字幕| 国产精品久久久久久久电影| 欧美国产精品v| 男女激情久久| 老妇喷水一区二区三区| 久久精品一区二区三区不卡牛牛| 亚洲性线免费观看视频成熟| 99视频超级精品| 日韩亚洲精品视频| 亚洲激情女人| 亚洲国产欧美国产综合一区| 亚洲电影在线免费观看| 欧美激情一区二区三区在线| 欧美激情亚洲精品| 亚洲电影在线免费观看| 亚洲国产成人av| 亚洲激情视频在线| 亚洲人成人77777线观看| 欧美sm视频| 亚洲福利在线视频| 亚洲激情在线观看视频免费| 亚洲成人在线视频播放 | 欧美精品三级在线观看| 欧美激情一区二区三区四区| 欧美区高清在线| 欧美视频在线观看一区| 国产精品国产三级国产专播精品人 | 亚洲国产电影| 艳妇臀荡乳欲伦亚洲一区| 一二三四社区欧美黄| 亚洲免费在线视频| 久久国产精品亚洲va麻豆| 久久三级视频| 欧美激情一区二区三区全黄 | 久久亚洲一区二区| 欧美激情国产日韩| 国产精品盗摄久久久| 国产亚洲一级高清| 亚洲欧洲精品一区二区三区不卡| 一本色道久久综合亚洲精品高清| 午夜精品久久久久影视|