青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

隨筆 - 87  文章 - 279  trackbacks - 0
<2006年6月>
28293031123
45678910
11121314151617
18192021222324
2526272829301
2345678

潛心看書研究!

常用鏈接

留言簿(19)

隨筆分類(81)

文章分類(89)

相冊

ACM OJ

My friends

搜索

  •  

積分與排名

  • 積分 - 219480
  • 排名 - 118

最新評論

閱讀排行榜

評論排行榜


1:查看CPU負載--mpstat
mpstat -P ALL [internal [count]]

參數的含義如下:
-P ALL 表示監控所有CPU
internal 相鄰的兩次采樣的間隔時間
count 采樣的次數

mpstat命令從/proc/stat獲得數據輸出
輸出的含義如下:


CPU 處理器ID
user 在internal時間段里,用戶態的CPU時間(%) ,不包含 nice值為負 進程 ?usr/?total*100
nice 在internal時間段里,nice值為負進程的CPU時間(%) ?nice/?total*100
system 在internal時間段里,核心時間(%) ?system/?total*100
iowait 在internal時間段里,硬盤IO等待時間(%) ?iowait/?total*100
irq 在internal時間段里,軟中斷時間(%) ?irq/?total*100
soft 在internal時間段里,軟中斷時間(%) ?softirq/?total*100
idle 在internal時間段里,CPU除去等待磁盤IO操作外的因為任何原因而空閑的時間閑置時間 (%) ?idle/?total*100

intr/s 在internal時間段里,每秒CPU接收的中斷的次數 ?intr/?total*100
CPU總的工作時間total_cur=user+system+nice+idle+iowait+irq+softirq

total_pre=pre_user+ pre_system+ pre_nice+ pre_idle+ pre_iowait+ pre_irq+ pre_softirq
user=user_cur – user_pre
total=total_cur-total_pre

其中_cur 表示當前值,_pre表示interval時間前的值。上表中的所有值可取到兩位小數點。

2:查看磁盤io情況及CPU負載--vmstat
usage: vmstat [-V] [-n] [delay [count]]
              -V prints version.
              -n causes the headers not to be reprinted regularly.
              -a print inactive/active page stats.
              -d prints disk statistics
              -D prints disk table
              -p prints disk partition statistics
              -s prints vm table
              -m prints slabinfo
              -S unit size
              delay is the delay between updates in seconds. 
              unit size k:1000 K:1024 m:1000000 M:1048576 (default is K)
              count is the number of updates.

vmstat從/proc/stat獲得數據

輸出的含義如下: 
FIELD DESCRIPTION FOR VM MODE
   Procs
       r: The number of processes waiting for run time.
       b: The number of processes in uninterruptible sleep.

   Memory
       swpd: the amount of virtual memory used.
       free: the amount of idle memory.
       buff: the amount of memory used as buffers.
       cache: the amount of memory used as cache.
       inact: the amount of inactive memory. (-a option)
       active: the amount of active memory. (-a option)

   Swap
       si: Amount of memory swapped in from disk (/s).
       so: Amount of memory swapped to disk (/s).

   IO
       bi: Blocks received from a block device (blocks/s).
       bo: Blocks sent to a block device (blocks/s).

   System
       in: The number of interrupts per second, including the clock.
       cs: The number of context switches per second.

   CPU
       These are percentages of total CPU time.
       us: Time spent running non-kernel code. (user time, including nice time)
       sy: Time spent running kernel code. (system time)
       id: Time spent idle. Prior to Linux 2.5.41, this includes IO-wait time.
       wa: Time spent waiting for IO. Prior to Linux 2.5.41, shown as zero.
       st: Time spent in involuntary wait. Prior to Linux 2.6.11, shown as zero.

3:查看內存使用情況--free
usage: free [-b|-k|-m|-g] [-l] [-o] [-t] [-s delay] [-c count] [-V]
  -b,-k,-m,-g show output in bytes, KB, MB, or GB
  -l show detailed low and high memory statistics
  -o use old format (no -/+buffers/cache line)
  -t display total for RAM + swap
  -s update every [delay] seconds
  -c update [count] times
  -V display version information and exit

[root@Linux /tmp]# free

            total     used        free       shared    buffers   cached
Mem:       255268    238332      16936         0        85540   126384
-/+ buffers/cache:   26408       228860 
Swap:      265000      0         265000

Mem:表示物理內存統計 
-/+ buffers/cached:表示物理內存的緩存統計 
Swap:表示硬盤上交換分區的使用情況,這里我們不去關心。
系統的總物理內存:255268Kb(256M),但系統當前真正可用的內存b并不是第一行free 標記的 16936Kb,它僅代表未被分配的內存。

第1行  Mem:
total:表示物理內存總量。 
used:表示總計分配給緩存(包含buffers 與cache )使用的數量,但其中可能部分緩存并未實際使用。 
free:未被分配的內存。 
shared:共享內存,一般系統不會用到,這里也不討論。 
buffers:系統分配但未被使用的buffers 數量。 
cached:系統分配但未被使用的cache 數量。buffer 與cache 的區別見后面。 
total = used + free    
第2行   -/+ buffers/cached:
used:也就是第一行中的used - buffers-cached   也是實際使用的內存總量。 
free:未被使用的buffers 與cache 和未被分配的內存之和,這就是系統當前實際可用內存。
free 2= buffers1 + cached1 + free1   //free2為第二行、buffers1等為第一行

buffer 與cache 的區別
A buffer is something that has yet to be "written" to disk. 
A cache is something that has been "read" from the disk and stored for later use
第3行:
對操作系統來講是Mem的參數.buffers/cached 都是屬于被使用,所以它認為free只有16936.
對應用程序來講是(-/+ buffers/cach).buffers/cached 是等同可用的,因為buffer/cached是為了提高文件讀取的性能,當應用程序需在用到內存的時候,buffer/cached會很快地被回收。
所以從應用程序的角度來說,可用內存=系統free memory+buffers+cached.

swap
swap就是LINUX下的虛擬內存分區,它的作用是在物理內存使用完之后,將磁盤空間(也就是SWAP分區)虛擬成內存來使用.

4:查看網卡情況--sar
詳細見man
4.1:查看網卡流量:sar -n DEV delay count 
服務器網卡最大能承受流量由網卡本身決定,分為10M、10/100自適應、100+以及1G網卡,一般普通服務器用的是百兆,也有用千兆的。

輸出解釋:
IFACE
       Name of the network interface for which statistics are reported.

rxpck/s
       Total number of packets received per second.

txpck/s
       Total number of packets transmitted per second.

rxbyt/s
       Total number of bytes received per second.

txbyt/s
       Total number of bytes transmitted per second.

rxcmp/s
       Number of compressed packets received per second (for cslip etc.).

txcmp/s
       Number of compressed packets transmitted per second.

rxmcst/s
       Number of multicast packets received per second.

4.2:查看網卡失敗情況:sar -n EDEV delay count 
輸出解釋:
IFACE
       Name of the network interface for which statistics are reported.

rxerr/s
       Total number of bad packets received per second.

txerr/s
       Total number of errors that happened per second while transmitting packets.

coll/s
       Number of collisions that happened per second while transmitting packets.

rxdrop/s
       Number of received packets dropped per second because of a lack of space in linux buffers.

txdrop/s
       Number of transmitted packets dropped per second because of a lack of space in linux buffers.

txcarr/s
       Number of carrier-errors that happened per second while transmitting packets.

rxfram/s
       Number of frame alignment errors that happened per second on received packets.

rxfifo/s
       Number of FIFO overrun errors that happened per second on received packets.

txfifo/s
       Number of FIFO overrun errors that happened per second on transmitted packets.


5:定位問題進程--top, ps
top -d delay,詳細見man
ps aux 查看進程詳細信息
ps axf 查看進程樹

6:查看某個進程與文件關系--losf
需要root權限才能看到全部,否則只能看到登錄用戶權限范圍內的內容

lsof -p 77//查看進程號為77的進程打開了哪些文件
lsof -d 4//顯示使用fd為4的進程 
lsof abc.txt//顯示開啟文件abc.txt的進程
lsof -i :22//顯示使用22端口的進程
lsof -i tcp//顯示使用tcp協議的進程
lsof -i tcp:22//顯示使用tcp協議的22端口的進程
lsof +d /tmp//顯示目錄/tmp下被進程打開的文件
lsof +D /tmp//同上,但是會搜索目錄下的目錄,時間較長
lsof -u username//顯示所屬user進程打開的文件

7:查看程序運行情況--strace
usage: strace [-dffhiqrtttTvVxx] [-a column] [-e expr] ... [-o file]
              [-p pid] ... [-s strsize] [-u username] [-E var=val] ...
              [command [arg ...]]
   or: strace -c [-e expr] ... [-O overhead] [-S sortby] [-E var=val] ...
              [command [arg ...]]

常用選項:
-f:除了跟蹤當前進程外,還跟蹤其子進程。
-c:統計每一系統調用的所執行的時間,次數和出錯的次數等. 
-o file:將輸出信息寫到文件file中,而不是顯示到標準錯誤輸出(stderr)。
-p pid:綁定到一個由pid對應的正在運行的進程。此參數常用來調試后臺進程。

8:查看磁盤使用情況--df
test@wolf:~$ df
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/sda1              3945128   1810428   1934292  49% /
udev                    745568        80    745488   1% /dev
/dev/sda3             12649960   1169412  10837948  10% /usr/local
/dev/sda4             63991676  23179912  37561180  39% /data

9:查看網絡連接情況--netstat
常用:netstat -lpn
選項說明:
 -p, --programs           display PID/Program name for sockets
 -l, --listening          display listening server sockets
 -n, --numeric            don't resolve names
 -a, --all, --listening   display all sockets (default: connected)
posted @ 2010-11-21 12:25 豪 閱讀(1382) | 評論 (1)編輯 收藏
Notes:
*. Time, Clocks and the Ordering of Events in a Distributed System" (1978)
    1. The issue is that in a distributed system you cannot tell if event A happened before event B, unless A caused B in some way. Each observer can see events happen in a different order, except for events that cause each other, ie there is only a partial ordering of events in a distributed system.
    2. Lamport defines the "happens before" relationship and operator, and goes on to give an algorithm that provides a total ordering of events in a distributed system, so that each process sees events in the same order as every other process.
    3. Lamport also introduces the concept of a distributed state machine: start a set of deterministic state machines in the same state and then make sure they process the same messages in the same order.
    4. Each machine is now a replica of the others. The key problem is making each replica agree what is the next message to process: a consensus problem.
    5. However, the system is not fault tolerant; if one process fails that others have to wait for it to recover.

*.  "Notes on Database Operating Systems" (1979).
    1. 2PC problem: Unfortunately 2PC would block if the TM (Transaction Manager) fails at the wrong time.

*.  "NonBlocking Commit Protocols" (1981)
    1. 3PC problem: The problem was coming up with a nice 3PC algorithm, this would only take nearly 25 years!

*. "Impossibility of distributed consensus with one faulty process" (1985)
    1. this famous result is known as the "FLP" result
    2. By this time "consensus" was the name given to the problem of getting a bunch of processors to agree a value.
    3. The kernel of the problem is that you cannot tell the difference between a process that has stopped and one that is running very slowly, making dealing with faults in an asynchronous system almost impossible.
    4. a distributed algorithm has two properties: safety and liveness. 2PC is safe: no bad data is ever written to the databases, but its liveness properties aren't great: if the TM fails at the wrong point the system will block.
    5. The asynchronous case is more general than the synchronous case: an algorithm that works for an asynchronous system will also work for a synchronous system, but not vice versa.

*.  "The Byzantine Generals Problem" (1982)
    1. In this form of the consensus problem the processes can lie, and they can actively try to deceive other processes.

*.  "A Comparison of the Byzantine Agreement Problem and the Transaction Commit Problem." (1987) .
    1. At the time the best consensus algorithm was the Byzantine Generals, but this was too expensive to use for transactions.

*.  "Uniform consensus is harder than consensus" (2000)
    1. With uniform consensus all processes must agree on a value, even the faulty ones - a transaction should only commit if all RMs are prepared to commit.
   
*.  "The Part-Time Parliament" (submitted in 1990, published 1998)
    1. Paxos consensus algorithm
   
*.  "How to Build a Highly Availability System using Consensus" (1996).
    1. This paper provides a good introduction to building fault tolerant systems and Paxos.

*.  "Paxos Made Simple (2001)
    1. The kernel of Paxos is that given a fixed number of processes, any majority of them must have at least one process in common. For example given three processes A, B and C the possible majorities are: AB, AC, or BC. If a decision is made when one majority is present eg AB, then at any time in the future when another majority is available at least one of the processes can remember what the previous majority decided. If the majority is AB then both processes will remember, if AC is present then A will remember and if BC is present then B will remember.
    2. Paxos can tolerate lost messages, delayed messages, repeated messages, and messages delivered out of order.
    3. It will reach consensus if there is a single leader for long enough that the leader can talk to a majority of processes twice. Any process, including leaders, can fail and restart; in fact all processes can fail at the same time, the algorithm is still safe. There can be more than one leader at a time.
    4. Paxos is an asynchronous algorithm; there are no explicit timeouts. However, it only reaches consensus when the system is behaving in a synchronous way, ie messages are delivered in a bounded period of time; otherwise it is safe. There is a pathological case where Paxos will not reach consensus, in accordance to FLP, but this scenario is relatively easy to avoid in practice.

*.   "Consensus in the presence of partial synchrony" (1988)
    1. There are two versions of partial synchronous system: in one processes run at speeds within a known range and messages are delivered in bounded time but the actual values are not known a priori; in the other version the range of speeds of the processes and the upper bound for message deliver are known a priori, but they will only start holding at some unknown time in the future.
    2. The partial synchronous model is a better model for the real world than either the synchronous or asynchronous model; networks function in a predicatable way most of the time, but occasionally go crazy.
   
*.   "Consensus on Transaction Commit" (2005).
    1. A third phase is only required if there is a fault, in accordance to the Skeen result. Given 2n+1 TM replicas Paxos Commit will complete with up to n faulty replicas.
    2. Paxos Commit does not use Paxos to solve the transaction commit problem directly, ie it is not used to solve uniform consensus, rather it is used to make the system fault tolerant.
    3.  Recently there has been some discussion of the CAP conjecture: Consistency, Availability and Partition. The conjecture asserts that you cannot have all three in a distributed system: a system that is consistent, that can have faulty processes and that can handle a network partition.
    4. Now take a Paxos system with three nodes: A, B and C. We can reach consensus if two nodes are working, ie we can have consistency and availability. Now if C becomes partitioned and C is queried, it cannot respond because it cannot communicate with the other nodes; it doesn't know whether it has been partitioned, or if the other two nodes are down, or if the network is being very slow. The other two nodes can carry on, because they can talk to each other and they form a majority. So for the CAP conjecture, Paxos does not handle a partition because C cannot respond to queries. However, we could engineer our way around this. If we are inside a data center we can use two independent networks (Paxos doesn't mind if messages are repeated). If we are on the internet, then we could have our client query all nodes A, B and C, and if C is partitioned the client can query A or B unless it is partitioned in a similar way to C.
    5. a synchronous network, if C is partitioned it can learn that it is partitioned if it does not receive messages in a fixed period of time, and thus can declare itself down to the client.

*.   "Co-Allocation, Fault Tolerance and Grid Computing" (2006).


[REF] http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html
posted @ 2010-08-12 23:37 豪 閱讀(1659) | 評論 (0)編輯 收藏

A "wait-free" procedure can complete in a finite number of steps, regardless of the relative speeds of other threads.

A "lock-free" procedure guarantees progress of at least one of the threads executing the procedure. That means some threads can be delayed arbitrarily, but it is guaranteed that at least one thread makes progress at each step.

CAS:assuming the map hasn't changed since I last looked at it, copy it. Otherwise, start all over again.

Delay Update:In plain English, the loop says "I'll replace the old map with a new, updated one, and I'll be on the lookout for any other updates of the map, but I'll only do the replacement when the reference count of the existing map is one." 


[REF]http://www.drdobbs.com/cpp/184401865
posted @ 2010-07-20 16:58 豪 閱讀(841) | 評論 (0)編輯 收藏


1.      Interactive games are write-heavy. Typical web apps read more than they write so many common architectures may not be sufficient. Read heavy apps can often get by with a caching layer in front of a single database. Write heavy apps will need to partition so writes are spread out and/or use an in-memory architecture.

2.    Design every component as a degradable service. Isolate components so increased latencies in one area won't ruin another. Throttle usage to help alleviate problems. Turn off features when necessary.

3.    Cache Facebook data. When you are deeply dependent on an external component consider caching that component's data to improve latency.

4.    Plan ahead for new release related usage spikes.

5.      Sample. When analyzing large streams of data, looking for problems for example, not every piece of data needs to be processed. Sampling data can yield the same results for much less work.


The key ideas are to isolate troubled and highly latent services from causing latency and performance issues elsewhere through use of error and timeout throttling, and if needed, disable functionality in the application using on/off switches and functionality based throttles.

posted @ 2010-07-16 15:06 豪 閱讀(891) | 評論 (1)編輯 收藏
1.如果是非引用賦值,用于賦值的變量指向的zval的is_ref=0,則直接指向,refcount++;若zval的is_ref=1,則copy on write,原zval refcount不變, 新變量指向一個新的zval,is_ref=0, refcount=1;

2.如果是引用賦值,用于復制的變量指向的zval的is_ref=0,則copy on write,原zval refcount--,新變量和引用變量同時指向新的zval,is_ref=1,refcount=2; 若zval的is_ref=1,則直接指向,refcount++;

posted @ 2010-05-18 22:45 豪 閱讀(1166) | 評論 (0)編輯 收藏
僅列出標題  下一頁
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久伊人免费视频| 亚洲午夜国产一区99re久久 | 亚洲视频一二| 最新中文字幕一区二区三区| 亚洲成人原创| 国产精品天美传媒入口| 欧美日本国产精品| 欧美日韩卡一卡二| 欧美日韩一二三四五区| 欧美成人午夜影院| 欧美日韩国产区一| 国产精品久久久亚洲一区| 国产精品家教| 国产欧美日韩一区二区三区| 国产精品一区二区你懂得| 国产精品一区二区三区久久久| 欧美性生交xxxxx久久久| 欧美性大战xxxxx久久久| 国产精品国产三级国产普通话三级 | 久久久91精品| 欧美粗暴jizz性欧美20| 欧美视频免费在线| 在线观看91久久久久久| 亚洲一区免费| 亚洲国产成人av| 亚洲一区二区在线免费观看视频| 亚洲欧美一区二区三区在线 | 亚洲影院高清在线| 久久国产精品久久国产精品| 久久久无码精品亚洲日韩按摩| 美国成人直播| 亚洲国产裸拍裸体视频在线观看乱了| 亚洲第一精品福利| 久久精品视频在线观看| 国产精品二区影院| 99在线热播精品免费| 免费在线看一区| 午夜在线一区| 国产日韩1区| 欧美一二区视频| 一区二区欧美在线观看| 欧美精品一区二区三区蜜臀| 亚洲国产99精品国自产| 久久av二区| 欧美专区福利在线| 狠狠入ady亚洲精品经典电影| 亚洲欧美日韩国产另类专区| 日韩一区二区精品| 国产精品国产三级国产专播精品人| 亚洲风情在线资源站| 欧美国产亚洲精品久久久8v| 久久精品亚洲一区二区三区浴池| 国产亚洲一区二区三区在线观看| 午夜亚洲福利在线老司机| 亚洲欧美日韩一区在线观看| 国产一区视频网站| 欧美激情免费观看| 欧美日韩国产一区二区三区| 欧美日韩午夜视频在线观看| 一区二区91| 香蕉国产精品偷在线观看不卡 | 男女视频一区二区| 99精品黄色片免费大全| 欧美午夜电影网| 久久久久一本一区二区青青蜜月| 久久久久国产精品一区二区| 亚洲国产天堂久久综合网| 亚洲国产精品一区二区三区| 亚洲午夜在线观看| 亚洲东热激情| 欧美成人精品影院| 欧美精品一二三| 噜噜噜久久亚洲精品国产品小说| 欧美日韩成人综合| 亚洲国产精彩中文乱码av在线播放| 欧美日韩专区| 日韩亚洲视频在线| 日韩午夜av电影| 久久色在线观看| 另类天堂av| 亚洲第一精品电影| 久久频这里精品99香蕉| 美女视频黄 久久| 亚洲国产成人精品女人久久久| 久久成人精品一区二区三区| 欧美一区二区三区免费观看视频| 欧美视频导航| 香港成人在线视频| 男人天堂欧美日韩| 夜夜嗨网站十八久久| 欧美日韩国产综合网| 国产精品99久久久久久白浆小说 | 国产日韩欧美日韩大片| 中文欧美字幕免费| 久久精品亚洲热| 亚洲国产va精品久久久不卡综合| 玖玖玖国产精品| 一区二区三区欧美在线观看| 国产精品尤物福利片在线观看| 日韩一级片网址| 久久久精彩视频| 一区二区三区免费网站| 国产日韩欧美综合精品| 裸体丰满少妇做受久久99精品| 亚洲精品视频在线播放| 久久久久国产精品麻豆ai换脸| 亚洲电影免费观看高清| 136国产福利精品导航网址| 欧美α欧美αv大片| 亚洲一区二区三区精品在线观看| 欧美主播一区二区三区美女 久久精品人 | 在线日韩视频| 亚洲国产精品福利| 欧美在线国产精品| 狠狠色狠狠色综合系列| 一区二区三区国产精华| 最近中文字幕mv在线一区二区三区四区| 久久综合九色综合久99| 欧美国产日韩免费| 亚洲一区三区电影在线观看| 亚洲欧美日韩国产成人精品影院| 欧美日韩和欧美的一区二区| 欧美日韩一区二区三区免费看| 国产亚洲在线观看| 一本一本a久久| 9久草视频在线视频精品| 欧美高清不卡在线| 欧美高清一区| 亚洲第一区在线观看| 欧美影院午夜播放| 久久久精品一品道一区| 久久精品免视看| 欧美成人精品一区| 亚洲日本欧美日韩高观看| 国产精品久在线观看| 夜夜嗨av一区二区三区网页| 亚洲美女少妇无套啪啪呻吟| 亚洲黄一区二区| 国产亚洲人成网站在线观看| 国产亚洲二区| 在线看欧美日韩| 亚洲一卡久久| 久久精品视频一| 亚洲国产综合91精品麻豆| 亚洲破处大片| 欧美一区二区三区日韩| 欧美日韩高清一区| 一区二区三区在线观看视频| 一本久道久久综合婷婷鲸鱼| 久久久久se| 亚洲欧美日韩国产成人| 亚洲免费观看高清完整版在线观看| 欧美大片一区二区| 久久av一区二区三区漫画| 美女国产一区| 激情丁香综合| 欧美成人精品一区二区| 亚洲图片欧美午夜| 欧美日韩高清一区| 亚洲视频综合在线| 亚洲精品午夜精品| 欧美乱人伦中文字幕在线| 狠狠色综合网| 欧美在线网址| 亚洲女与黑人做爰| 国产精品videosex极品| 亚洲高清视频的网址| 久久综合九色综合久99| 久久国产精品一区二区| 国内精品久久久久久久影视蜜臀| 在线视频日韩| 亚洲午夜一级| 国产视频欧美视频| 久久狠狠婷婷| 久久精品在线| 一区二区三区四区精品| 91久久中文| 99精品国产高清一区二区| 欧美成人黄色小视频| 一区二区三区不卡视频在线观看 | 亚洲欧美成人一区二区三区| 亚洲特级毛片| 在线观看91精品国产入口| 亚洲精品乱码久久久久久蜜桃91| 麻豆成人av| 一本色道久久综合狠狠躁篇的优点| 亚洲午夜影视影院在线观看| 新67194成人永久网站| 伊人久久大香线| 国产精品99久久不卡二区| 伊人夜夜躁av伊人久久| 亚洲精品日产精品乱码不卡| 国产亚洲视频在线观看| 亚洲韩国精品一区| 国产婷婷色一区二区三区在线 | 国产一区二区丝袜高跟鞋图片| 亚洲国产三级| 91久久极品少妇xxxxⅹ软件| 久久久久久9| 欧美与黑人午夜性猛交久久久|