• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Using memset(), memcpy(), and memmove() in C

            The article is from http://www.java-samples.com/showtutorial.php?tutorialid=591

            To set all the bytes in a block of memory to a particular value, use memset(). The function prototype is

            void * memset(void *dest, int c, size_t count);
            

            The argument dest points to the block of memory. c is the value to set, and count is the number of bytes, starting at dest, to be set. Note that while c is a type int, it is treated as a type char. In other words, only the low-order byte is used, and you can specify values of c only in the range 0 through 255.

            Use memset() to initialize a block of memory to a specified value. Because this function can use only a type char as the initialization value, it is not useful for working with blocks of data types other than type char, except when you want to initialize to 0. In other words, it wouldn't be efficient to use memset() to initialize an array of type int to the value 99, but you could initialize all array elements to the value 0. memset() will be demonstrated in program below.

            The memcpy() Function

            memcpy() copies bytes of data between memory blocks, sometimes called buffers. This function doesn't care about the type of data being copied--it simply makes an exact byte-for-byte copy. The function prototype is

            void *memcpy(void *dest, void *src, size_t count);
            

            The arguments dest and src point to the destination and source memory blocks, respectively. count specifies the number of bytes to be copied. The return value is dest. If the two blocks of memory overlap, the function might not operate properly--some of the data in src might be overwritten before being copied. Use the memmove() function, discussed next, to handle overlapping memory blocks. memcpy() will be demonstrated in program below.

            The memmove() Function

            memmove() is very much like memcpy(), copying a specified number of bytes from one memory block to another. It's more flexible, however, because it can handle overlapping memory blocks properly. Because memmove() can do everything memcpy() can do with the added flexibility of dealing with overlapping blocks, you rarely, if ever, should have a reason to use memcpy(). The prototype is

            void *memmove(void *dest, void *src, size_t count);
            

            dest and src point to the destination and source memory blocks, and count specifies the number of bytes to be copied. The return value is dest. If the blocks overlap, this function ensures that the source data in the overlapped region is copied before being overwritten. Sample program below demonstrates memset(), memcpy(), and memmove().

            A demonstration of memset(), memcpy(), and memmove().

            1: /* Demonstrating memset(), memcpy(), and memmove(). */
            2:
            3: #include <stdio.h>
            4: #include <string.h>
            4:
            5: char message1[60] = "Four score and seven years ago ...";
            6: char message2[60] = "abcdefghijklmnopqrstuvwxyz";
            7: char temp[60];
            8:
            9: main()
            10: {
            11:    printf("\nmessage1[] before memset():\t%s", message1);
            12:    memset(message1 + 5, `@', 10);
            13:    printf("\nmessage1[] after memset():\t%s", message1);
            14:
            15:    strcpy(temp, message2);
            16:    printf("\n\nOriginal message: %s", temp);
            17:    memcpy(temp + 4, temp + 16, 10);
            18:    printf("\nAfter memcpy() without overlap:\t%s", temp);
            19:    strcpy(temp, message2);
            20:    memcpy(temp + 6, temp + 4, 10);
            21:    printf("\nAfter memcpy() with overlap:\t%s", temp);
            22:
            23:    strcpy(temp, message2);
            24:    printf("\n\nOriginal message: %s", temp);
            25:    memmove(temp + 4, temp + 16, 10);
            26:    printf("\nAfter memmove() without overlap:\t%s", temp);
            27:    strcpy(temp, message2);
            28:    memmove(temp + 6, temp + 4, 10);
            29:    printf("\nAfter memmove() with overlap:\t%s\n", temp);
            30:
            31: }
            message1[] before memset():     Four score and seven years ago ...
            message1[] after memset():      Four @@@@@@@@@@seven years ago ...
            Original message: abcdefghijklmnopqrstuvwxyz
            After memcpy() without overlap: abcdqrstuvwxyzopqrstuvwxyz
            After memcpy() with overlap:    abcdefefefefefefqrstuvwxyz
            Original message: abcdefghijklmnopqrstuvwxyz
            After memmove() without overlap:        abcdqrstuvwxyzopqrstuvwxyz
            After memmove() with overlap:   abcdefefghijklmnqrstuvwxyz
            

            ANALYSIS: The operation of memset() is straightforward. Note how the pointer notation message1 + 5 is used to specify that memset() is to start setting characters at the sixth character in message1[] (remember, arrays are zero-based). As a result, the 6th through 15th characters in message1[] have been changed to @.

            When source and destination do not overlap, memcpy() works fine. The 10 characters of temp[] starting at position 17 (the letters q through z) have been copied to positions 5 though 14, where the letters e though n were originally located. If, however, the source and destination overlap, things are different. When the function tries to copy 10 characters starting at position 4 to position 6, an overlap of 8 positions occurs. You might expect the letters e through n to be copied over the letters g through p. Instead, the letters e and f are repeated five times.

            If there's no overlap, memmove() works just like memcpy(). With overlap, however, memmove() copies the original source characters to the destination.

            posted on 2010-08-31 11:06 lhking 閱讀(553) 評論(0)  編輯 收藏 引用

            導航

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            統計

            常用鏈接

            留言簿

            隨筆檔案

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            四虎影视久久久免费| 久久精品视频网| 亚洲乱码精品久久久久.. | 一本色综合网久久| 精品人妻久久久久久888| 精品久久国产一区二区三区香蕉 | 精品久久久久久久久久久久久久久 | 久久精品中文字幕一区| 久久久久久久久无码精品亚洲日韩| 韩国免费A级毛片久久| 久久精品国产亚洲av瑜伽| 99久久国产精品免费一区二区| 99精品久久久久久久婷婷| 久久亚洲欧美国产精品| 99久久精品免费看国产免费| 亚洲va中文字幕无码久久 | 色老头网站久久网| 精品免费久久久久国产一区| 国产精品99精品久久免费| A级毛片无码久久精品免费| 老司机午夜网站国内精品久久久久久久久 | 久久精品中文无码资源站| 国产精品亚洲美女久久久| 久久久久久亚洲精品成人| 精品国产青草久久久久福利| 欧美午夜A∨大片久久| 久久久久国产精品嫩草影院| 久久综合久久综合九色| 国内精品伊人久久久久| 中文字幕成人精品久久不卡| 99久久99久久久精品齐齐| 久久人人爽爽爽人久久久| 久久久久人妻精品一区二区三区 | 日本欧美久久久久免费播放网| 久久伊人五月天论坛| 国产午夜精品久久久久九九电影 | 亚洲中文字幕无码久久2020| 久久精品国产免费观看三人同眠| 亚洲色欲久久久久综合网| 精品国产乱码久久久久软件| 2021久久精品免费观看|