• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Using memset(), memcpy(), and memmove() in C

            The article is from http://www.java-samples.com/showtutorial.php?tutorialid=591

            To set all the bytes in a block of memory to a particular value, use memset(). The function prototype is

            void * memset(void *dest, int c, size_t count);
            

            The argument dest points to the block of memory. c is the value to set, and count is the number of bytes, starting at dest, to be set. Note that while c is a type int, it is treated as a type char. In other words, only the low-order byte is used, and you can specify values of c only in the range 0 through 255.

            Use memset() to initialize a block of memory to a specified value. Because this function can use only a type char as the initialization value, it is not useful for working with blocks of data types other than type char, except when you want to initialize to 0. In other words, it wouldn't be efficient to use memset() to initialize an array of type int to the value 99, but you could initialize all array elements to the value 0. memset() will be demonstrated in program below.

            The memcpy() Function

            memcpy() copies bytes of data between memory blocks, sometimes called buffers. This function doesn't care about the type of data being copied--it simply makes an exact byte-for-byte copy. The function prototype is

            void *memcpy(void *dest, void *src, size_t count);
            

            The arguments dest and src point to the destination and source memory blocks, respectively. count specifies the number of bytes to be copied. The return value is dest. If the two blocks of memory overlap, the function might not operate properly--some of the data in src might be overwritten before being copied. Use the memmove() function, discussed next, to handle overlapping memory blocks. memcpy() will be demonstrated in program below.

            The memmove() Function

            memmove() is very much like memcpy(), copying a specified number of bytes from one memory block to another. It's more flexible, however, because it can handle overlapping memory blocks properly. Because memmove() can do everything memcpy() can do with the added flexibility of dealing with overlapping blocks, you rarely, if ever, should have a reason to use memcpy(). The prototype is

            void *memmove(void *dest, void *src, size_t count);
            

            dest and src point to the destination and source memory blocks, and count specifies the number of bytes to be copied. The return value is dest. If the blocks overlap, this function ensures that the source data in the overlapped region is copied before being overwritten. Sample program below demonstrates memset(), memcpy(), and memmove().

            A demonstration of memset(), memcpy(), and memmove().

            1: /* Demonstrating memset(), memcpy(), and memmove(). */
            2:
            3: #include <stdio.h>
            4: #include <string.h>
            4:
            5: char message1[60] = "Four score and seven years ago ...";
            6: char message2[60] = "abcdefghijklmnopqrstuvwxyz";
            7: char temp[60];
            8:
            9: main()
            10: {
            11:    printf("\nmessage1[] before memset():\t%s", message1);
            12:    memset(message1 + 5, `@', 10);
            13:    printf("\nmessage1[] after memset():\t%s", message1);
            14:
            15:    strcpy(temp, message2);
            16:    printf("\n\nOriginal message: %s", temp);
            17:    memcpy(temp + 4, temp + 16, 10);
            18:    printf("\nAfter memcpy() without overlap:\t%s", temp);
            19:    strcpy(temp, message2);
            20:    memcpy(temp + 6, temp + 4, 10);
            21:    printf("\nAfter memcpy() with overlap:\t%s", temp);
            22:
            23:    strcpy(temp, message2);
            24:    printf("\n\nOriginal message: %s", temp);
            25:    memmove(temp + 4, temp + 16, 10);
            26:    printf("\nAfter memmove() without overlap:\t%s", temp);
            27:    strcpy(temp, message2);
            28:    memmove(temp + 6, temp + 4, 10);
            29:    printf("\nAfter memmove() with overlap:\t%s\n", temp);
            30:
            31: }
            message1[] before memset():     Four score and seven years ago ...
            message1[] after memset():      Four @@@@@@@@@@seven years ago ...
            Original message: abcdefghijklmnopqrstuvwxyz
            After memcpy() without overlap: abcdqrstuvwxyzopqrstuvwxyz
            After memcpy() with overlap:    abcdefefefefefefqrstuvwxyz
            Original message: abcdefghijklmnopqrstuvwxyz
            After memmove() without overlap:        abcdqrstuvwxyzopqrstuvwxyz
            After memmove() with overlap:   abcdefefghijklmnqrstuvwxyz
            

            ANALYSIS: The operation of memset() is straightforward. Note how the pointer notation message1 + 5 is used to specify that memset() is to start setting characters at the sixth character in message1[] (remember, arrays are zero-based). As a result, the 6th through 15th characters in message1[] have been changed to @.

            When source and destination do not overlap, memcpy() works fine. The 10 characters of temp[] starting at position 17 (the letters q through z) have been copied to positions 5 though 14, where the letters e though n were originally located. If, however, the source and destination overlap, things are different. When the function tries to copy 10 characters starting at position 4 to position 6, an overlap of 8 positions occurs. You might expect the letters e through n to be copied over the letters g through p. Instead, the letters e and f are repeated five times.

            If there's no overlap, memmove() works just like memcpy(). With overlap, however, memmove() copies the original source characters to the destination.

            posted on 2010-08-31 11:06 lhking 閱讀(553) 評論(0)  編輯 收藏 引用

            導航

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            統計

            常用鏈接

            留言簿

            隨筆檔案

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲AV成人无码久久精品老人| 国产精品18久久久久久vr| 日韩AV无码久久一区二区 | 午夜精品久久久久久毛片| 国产精品久久久久蜜芽| 久久久久99精品成人片欧美| 久久国产乱子伦精品免费强| 久久免费大片| 精品人妻久久久久久888| 久久人人爽人人爽人人片AV麻豆| 国产美女亚洲精品久久久综合| 国产精品99久久久久久董美香| 中文字幕无码久久精品青草| 久久久久四虎国产精品| 国产成人精品综合久久久| 国产精品无码久久综合网| 蜜臀av性久久久久蜜臀aⅴ麻豆 | 亚洲国产成人久久一区WWW| 久久夜色精品国产噜噜噜亚洲AV | 亚洲va中文字幕无码久久| 九九久久精品国产| 97久久综合精品久久久综合| 国产69精品久久久久9999APGF| 国产精品99久久不卡| 久久国产精品久久| 91久久精一区二区三区大全| 久久99精品国产麻豆宅宅| 亚洲日韩欧美一区久久久久我| 色成年激情久久综合| 久久精品成人免费看| 久久国产精品久久精品国产| 久久ZYZ资源站无码中文动漫| 亚洲成色www久久网站夜月| 色婷婷综合久久久久中文 | 蜜臀av性久久久久蜜臀aⅴ麻豆| 久久婷婷色香五月综合激情| 久久久精品久久久久影院| 亚洲精品国产综合久久一线| 狠狠色丁香久久婷婷综合图片| 亚洲Av无码国产情品久久| 2020国产成人久久精品|