Open CASCADE Modeling Data - Points on Curves

eryar@163.com

几何算法用来计算三维空间中参数化曲线的特征点的值。这些特征点如下:

- u 均分曲线的点;
- u 等弦长均分曲线点;
- u 计算曲线上指定点和距离的另一点;

包 GCPnts 用来计算常量偏差或常量横坐标值的点。这些算法类有:

- **u** *AbscissaPoint*: 根据曲线上指定点和距离计算出曲线上满足要求的另一个点;
- u UniformAbscissa: 根据曲线上指定的横坐标计算出一系列的点;
- UniformDeflection: Calculation of a set of points at maximum constant deflection between the curve and the polygon that results from the computed points.

例子: Visualizing a curve.

C is an adapted curve, i.e. an object which is an interface between: the services provided by either a 2D curve from the package Geom2d (in the case of an Adaptor_Curve2d curve) or a 3D curve from the package Geom (in the case of an Adaptor_Curve curve), and those required on the curve by the computation algorithm. The adapted curve is created in the following way:

```
case 2D:
  Handle(Geom2d_Curve) mycurve = ...;
  Geom2dAdaptor_Curve C (mycurve) ;
case 3D:
  Handle(Geom_Curve) mycurve = ...;
   GeomAdaptor_Curve C (mycurve);
The algorithm is then constructed with this object:
  GCPnts_UniformDeflection myAlgo ();
  Standard_Real Deflection = ...;
  myAlgo.Initialize ( C , Deflection ) ;
  if ( myAlgo.IsDone() )
     { Standard_Integer nbr = myAlgo.NbPoints() ;
       Standard_Real param;
        for ( Standard_Integer i = 1 ; i <= nbr ; i++ )
               { param = myAlgo.Parameter (i) ;
               }
     }
```