
XEP-0176: Jingle ICE-UDP Transport Method

Joe Beda
mailto:jbeda@google.com
xmpp:jbeda@google.com

Scott Ludwig
mailto:scottlu@google.com
xmpp:scottlu@google.com

Peter Saint-Andre
mailto:stpeter@jabber.org
xmpp:stpeter@jabber.org

https://stpeter.im/

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Sean Egan
mailto:seanegan@google.com
xmpp:seanegan@google.com

Robert McQueen
mailto:robert.mcqueen@collabora.co.uk
xmpp:robert.mcqueen@collabora.co.uk

2009-06-10
Version 1.0

Status Type Short Name
Draft Standards Track jingle-ice-udp

This specification defines a Jingle transport method that results in sending media data using raw data-
gram associations via the User Datagram Protocol (UDP). This transport method is negotiated via the In-
teractive Connectivity Establishment (ICE) methodology, which provides robust NAT traversal for media
traffic.

mailto:jbeda@google.com
xmpp:jbeda@google.com
mailto:scottlu@google.com
xmpp:scottlu@google.com
mailto:stpeter@jabber.org
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org
mailto:seanegan@google.com
xmpp:seanegan@google.com
mailto:robert.mcqueen@collabora.co.uk
xmpp:robert.mcqueen@collabora.co.uk

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2013 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <http://xmpp.org/about-xmpp/xsf/xsf-i
pr-policy/> or obtained by writing to XMPP Standards Foundation, 1899 Wynkoop Street, Suite 600,
Denver, CO 80202 USA).

http://xmpp.org/
http://xmpp.org/about-xmpp/xsf/xsf-ipr-policy/
http://xmpp.org/about-xmpp/xsf/xsf-ipr-policy/

Contents

1 Introduction 1

2 Glossary 1

3 Requirements 2

4 Jingle Conformance 2

5 Protocol Description 2
5.1 Overall Flow . 2
5.2 Session Initiation . 3
5.3 Syntax . 4
5.4 Response . 7
5.5 Candidate Negotiation . 8
5.6 Connectivity Checks . 9
5.7 Acceptance of Successful Candidate . 11
5.8 Negotiating a New Candidate . 12
5.9 ICE Restarts . 13

6 Fallback to Raw UDP 14

7 Determining Support 19
7.1 ICE Support . 19
7.2 SDP Offer / Answer Support . 20

8 Implementation Notes 20

9 Deployment Notes 20

10 Security Considerations 21
10.1 Sharing IP Addresses . 21
10.2 Encryption of Media . 21

11 IANA Considerations 22

12 XMPP Registrar Considerations 22
12.1 Protocol Namespaces . 22
12.2 Protocol Versioning . 22
12.3 Service Discovery Features . 22
12.4 Jingle Transport Methods . 23

13 XML Schema 23

14 Acknowledgements 25

2 GLOSSARY

1 Introduction

Jingle 1 defines a framework for negotiating and managing out-of-band data sessions over
XMPP. In order to provide a flexible framework, the base Jingle specification defines neither
data transport methods nor application formats, leaving that up to separate specifications.
The current document defines a transport method for establishing and managing data
exchanges between XMPP entities over the User Datagram Protocol (see RFC 768 2), using the
ICE methodology developed within the IETF and specified in RFC 5245 3 (hereafter referred to
as ICE-CORE). Use of this ”ice-udp” method results in a datagram transport suitable for media
applications where some packet loss is tolerable (e.g., audio and video).
Note: ICE-CORE has been approved for publication as an RFC but has not yet been published as
an RFC. While every effort has been made to keep this document synchronized with ICE-CORE,
the interested reader is referred to ICE-CORE for a detailed description of the ICEmethodology.
The process for ICE negotiation is largely the same in Jingle as it is in ICE. There are several
differences:

• Instead of using the Session Initiation Protocol (SIP) as the signalling channel, Jingle uses
XMPP as the signalling channel.

• Syntax from the Session Description Protocol (see RFC 4566 4) is mapped to an XML syn-
tax suitable for sending over the XMPP signalling channel.

• In Jingle, lists of ”preferred” candidates are typically sent in the Jingle session-initiate
and session-accept messages, in a way that is consistent with the SDP offer / answer
model described in RFC 3264 5 and the process described in ICE-CORE.

• Candidates can also be sent in separate transport-info messages either before sending
the session-accept message (to expedite negotiation) or after media begins to flow (to
findmodify existing candidates, find superior candidates, or adjust to changing network
conditions).

2 Glossary

The reader is referred to ICE-CORE for a description of various terms used in the context of
ICE. Those terms are not reproduced here.

1XEP-0166: Jingle <http://xmpp.org/extensions/xep-0166.html>.
2RFC 768: User Datagram Protocol <http://tools.ietf.org/html/rfc0768>.
3RFC 5245: Interactive Connectivity Establishment (ICE) <http://tools.ietf.org/html/rfc5245>.
4RFC 4566: SDP: Session Description Protocol <http://tools.ietf.org/html/rfc4566>.
5RFC 3264: An Offer/Answer Model with the Session Description Protocol (SDP) <http://tools.ietf.org/html/
rfc3264>.

1

http://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc0768
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc3264
http://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc0768
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264

5 PROTOCOL DESCRIPTION

3 Requirements

The Jingle transport method defined herein is designed to meet the following requirements:

1. Make it possible to establish and manage out-of-band connections between two XMPP
entities, even if they are behind Network Address Translators (NATs) or firewalls.

2. Enable use of UDP as the transport protocol.

3. Make it relatively easy to implement support in standard Jabber/XMPP clients.

4. Where communication with non-XMPP entities is needed, push as much complexity as
possible onto server-side gateways between the XMPP network and the non-XMPP net-
work.

4 Jingle Conformance

In accordance with Section 10 of XEP-0166, this document specifies the following information
related to the Jingle ice-udp transport method:

1. The transport negotiation process is defined in the Protocol Description section of this
document.

2. The semantics of the <transport/> element are defined in the ICE Negotiation section of
this document.

3. Successful negotiation of the ice-udpmethod results in use of a datagram transport that
is suitable for applications where some packet loss is tolerable, such as audio and video.

4. If multiple components are to be communicated by the application type that uses the
transport, the transport shall support those components and assign identifiers for them
as described in the specification that defines the application type.

5 Protocol Description

5.1 Overall Flow

The overall protocol flow for negotiation of the Jingle ICE-UDP Transport Method is as follows
(note: many of these events happen simultaneously, not in sequence).

2

5 PROTOCOL DESCRIPTION

INITIATOR RESPONDER
| |
| Jingle session -initiate stanza |
| (with zero or more candidates) |
|------------------------------------->|
| Jingle ack (XMPP IQ-result) |
|<-------------------------------------|
| Jingle session -accept stanza |
| (with one or more candidates) |
|<-------------------------------------|
| Jingle ack (XMPP IQ-result) |
|------------------------------------->|
| multiple STUN Binding Requests |
|<==================================== >|
| multiple STUN Binding Results |
|<==================================== >|
|<========= MEDIA NOW FLOWS ============ >|
| optional Jingle transport -info |
| stanzas (one candidate per stanaza) |
|<------------------------------------>|
| |

Note: The examples in this document follow the scenario described in Section 17 of ICE-CORE,
except that we substitute the Shakespearean characters ”Romeo” and ”Juliet” for the generic
entities ”L” and ”R”.

5.2 Session Initiation

In order for the initiator in a Jingle exchange to start the negotiation, it sends a Jingle
”session-initiate” stanza that includes at least one content type, as described in XEP-0166. If
the initiator wishes to negotiate the ice-udp transport method for an application format, it
MUST include a <transport/> child element qualified by the ’urn:xmpp:jingle:transports:ice-
udp:1’ namespace (see Namespace Versioning regarding the possibility of incrementing the
version number). This element SHOULD in turn contain one <candidate/> element for each of
the initiator’s higher-priority transport candidates as determined in accordance with the ICE
methodology, but MAY instead be empty (with each candidate to be sent as the payload of a
transport-info message).

Listing 1: Initiation
<iq from=’romeo@montague.lit/orchard ’

id=’ixt174g9 ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -initiate ’

3

5 PROTOCOL DESCRIPTION

initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’this -is -the -audio -content ’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1 ’ media=’audio ’>

<payload -type id=’96’ name=’speex ’ clockrate=’16000 ’/>
<payload -type id=’97’ name=’speex ’ clockrate=’8000’/>
<payload -type id=’18’ name=’G729’/>
<payload -type id=’0’ name=’PCMU’ />
<payload -type id=’103’ name=’L16’ clockrate=’16000 ’ channels=’

2’/>
<payload -type id=’98’ name=’x-ISAC’ clockrate=’8000’/>

</description >
<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’

pwd=’asd88fgpdd777uzjYhagZg ’
ufrag=’8hhy’>

<candidate component=’1’
foundation=’1’
generation=’0’
id=’el0747fg11 ’
ip=’10.0.1.1 ’
network=’1’
port=’8998’
priority=’2130706431 ’
protocol=’udp’
type=’host’/>

<candidate component=’1’
foundation=’2’
generation=’0’
id=’y3s2b30v3r ’
ip=’192.0.2.3 ’
network=’1’
port=’45664 ’
priority=’1694498815 ’
protocol=’udp’
rel -addr=’10.0.1.1 ’
rel -port=’8998’
type=’srflx ’/>

</transport >
</content >

</jingle >
</iq>

5.3 Syntax

The <transport/> element’s ’pwd’ and ’ufrag’ attributes MUST be included whenever sending
one or more candidates to the other party, e.g. in a session-initiate, session-accept, transport-
info, content-add, or transport-replacemessage. The values for these attributes are separately
generated for both the initiator and the responder, in accordance with ICE-CORE and as shown

4

5 PROTOCOL DESCRIPTION

in the examples. The attributes of the <transport/> element are as follows.

Name Description SDP Syntax Example
pwd A Password as defined in

ICE-CORE.
a=ice-pwd line asd88fgpdd777uzjYhagZg

ufrag A User Fragment as de-
fined in ICE-CORE.

a=ice-ufrag line 8hhy

The attributes of the <candidate/> element are as follows.

Name Description SDP Syntax Example
component A Component ID as de-

fined in ICE-CORE.
Component ID value in
a=candidate line

1

foundation A Foundation as defined
in ICE-CORE.

Foundation value in
a=candidate line

1

generation An index, starting at 0,
that enables the par-
ties to keep track of up-
dates to the candidate
throughout the life of
the session. For details,
see the ICE Restarts sec-
tion of this document.

N/A 0

id A unique identifier for
the candidate.

N/A el0747fg11

ip The Internet Protocol
(IP) address for the can-
didate transport mech-
anism; this can be ei-
ther an IPv4 address or
an IPv6 address.

IP Address value in
a=candidate line

192.0.2.3

network An index, starting at
0, referencing which
network this candidate
is on for a given peer
(used for diagnostic
purposes if the calling
hardware has more
than one Network
Interface Card).

N/A 0

port The port at the candi-
date IP address.

Port value in
a=candidate line

45664

5

5 PROTOCOL DESCRIPTION

Name Description SDP Syntax Example
priority A Priority as defined

in ICE-CORE. In accor-
dance with the rules
specified in Section
4.1.1 of ICE-CORE, the
priority values shown
in the examples within
this document have
been calculated as
follows. The ”type
preference” for host
candidates is stipu-
lated to be ”126” and
for server reflexive
candidates ”100”. The
”local preference” for
network 0 is stipulated
to be ”4096”, for net-
work 1 ”2048”, and for
network 2 ”1024”.

Priority value in
a=candidate line

2130706431

protocol The protocol to be used.
The only value defined
by this specification is
”udp”. Future specifi-
cations might define
other values such as
”tcp”.

Transport protocol field
in a=candidate line

udp

rel-addr A related address as de-
fined in ICE-CORE.

raddr value in
a=candidate line

10.0.1.1

rel-port A related port as de-
fined in ICE-CORE.

rport value in
a=candidate line

8998

type A Candidate Type as
defined in ICE-CORE.
The allowable values
are ”host” for host can-
didates, ”prflx” for peer
reflexive candidates,
”relay” for relayed
candidates, and ”srflx”
for server reflexive
candidates.

Typ field in a=candidate
line

srflx

6

5 PROTOCOL DESCRIPTION

5.4 Response

As described in XEP-0166, to acknowledge receipt of the session initiation request, the
responder immediately returns an IQ-result.

Listing 2: Responder acknowledges receipt of session-initiate request
<iq from=’juliet@capulet.lit/balcony ’

id=’ixt174g9 ’
to=’romeo@montague.lit/orchard ’
type=’result ’/>

Depending on the application type, a user agent controlled by a human user might need to
wait for the user to affirm a desire to proceed with the session before continuing. When the
user agent has received such affirmation (or if the user agent can automatically proceed for
any reason, e.g. because no human intervention is expected or because a human user has
configured the user agent to automatically accept sessions with a given entity), it returns a
Jingle session-accept message. This message MUST contain a <transport/> element qualified
by the ’urn:xmpp:jingle:transports:ice-udp:1’ namespace, which SHOULD in turn contain one
<candidate/> element for each ICE-UDP candidate generated by or known to the responder,
but MAY instead be empty (with each candidate to be sent as the payload of a transport-info
message).
Note: See the Security Considerations section of this document regarding the exposure of IP
addresses by the responder’s client.

Listing 3: Responder accepts the session request
<iq from=’juliet@capulet.lit/balcony ’

id=’rw782g55 ’
to=’romeo@montague.lit/orchard ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -accept ’
initiator=’romeo@montague.lit/orchard ’
responder=’juliet@capulet.lit/balcony ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’this -is -the -audio -content ’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1 ’ media=’audio ’>

<payload -type id=’97’ name=’speex ’ clockrate=’8000’/>
<payload -type id=’18’ name=’G729’/>

</description >
<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’

pwd=’YH75Fviy6338Vbrhrlp8Yh ’
ufrag=’9uB6’>

<candidate component=’1’
foundation=’1’
generation=’0’
id=’or2ii2syr1 ’

7

5 PROTOCOL DESCRIPTION

ip=’192.0.2.1 ’
network=’0’
port=’3478’
priority=’2130706431 ’
protocol=’udp’
type=’host’/>

</transport >
</content >

</jingle >
</iq>

5.5 Candidate Negotiation

The initiator and responder negotiate connectivity over ICE by exchanging XML-formatted
transport candidates for the channel. This negotiation proceeds immediately in order to
maximize the possibility that connectivity can be established (and therefore media can be
exchanged) as quickly as possible. In order to expedite session establishment, the initiator
SHOULD include transport candidates in its session-initiate message but MAY also send
additional transport candidates as soon as it learns of them, even before receiving acknowl-
edgement of the session-initiate message (i.e., the initiator MUST consider the session to be
live as soon as it sends the session-initiate message). 6
The first step in negotiating connectivity is for each party to send transport candidates to the
other party. 8 These candidates SHOULD be gathered by following the procedure specified in
Section 4.1.1 of ICE-CORE (typically by communicating with a standalone STUN server in order
to discover the client’s public IP address and port) and prioritized by following the procedure
specified in Section 4.1.2 of ICE-CORE.
Each candidate shall be sent as a <candidate/> child of a <transport/> element qualified by
the ’urn:xmpp:jingle:transports:ice-udp:1’ namespace. The <transport/> element is sent via a
Jingle message of type session-initiate, session-accept, or transport-info.
Either party MAY include multiple <candidate/> elements in one <transport/> element, espe-
cially in the session-initiate and session-accept messages sent at the beginning of the session
negotiation. Including multiple candidates in the session-initiate and session-accept mes-
sages can help to ensure interoperability with entities that implement the SDP offer/answer
model described in RFC 3264; in particular, an entity SHOULD include multiple candidates
in its session-initiate or session-accept message if the other party advertises support for the
”urn:ietf:rfc:3264” service discovery feature as described in the SDP Offer / Answer Support
section of this document. However, including one candidate per subsequent transport-info
message typically results in a faster negotiation because the candidates most likely to succeed
are sent first (in the session-info and session-accept messages) and it is not necessary to
gather all candidates before beginning to send any candidates; furthermore, because certain
6Given in-order delivery as mandated by XMPP Core 7, the responder will receive such transport-info messages
after receiving the session-initiate message; if not, it is appropriate for the responder to return <unknown-
session/> errors since according to its state machine the session does not exist.

8The fact that both parties send candidates means that Jingle requires each party to be a full implementation of
ICE, not a lite implementation as specified in ICE-CORE.

8

http://tools.ietf.org/html/rfc6120

5 PROTOCOL DESCRIPTION

candidates can be more ”expensive” in terms of bandwidth or processing power, either party
might not want to advertise the existence of such candidates unless it is necessary to do so
after other candidates have failed.
If the party that receives a candidate in a Jingle message can successfully process a given can-
didate or set of candidates, it returns an IQ-result (if not, for example because the candidate
data is improperly formatted, it returns an IQ-error). At this point, the receiving entity is only
indicating receipt of the candidate or set of candidates, not telling the other party that the
candidate will be used.
The initiator can keep sending candidates (without stopping to receive an acknowledgement
of receipt from the responder for each candidate) until it has exhausted its supply of possible
or desirable transport candidates. The responder can also keep sending potential candidates,
which the initiator will acknowledge.

5.6 Connectivity Checks

As the initiator and responder receive candidates, they probe the candidates for connectivity.
In performing these connectivity checks, each party SHOULD follow the procedure specified
in Section 7 of ICE-CORE. The following business rules apply:

1. Each party sends a STUN Binding Request (see RFC 5389 9) from each local candidate it
generated to each remote candidate it received.

2. In accordance with ICE-CORE, the STUN Binding Requests MUST include the PRIORITY
attribute (computed according to Section 7.1.1.1. of ICE-CORE).

3. For the purposes of the Jingle ICE-UDP Transport Method, both parties are full ICE im-
plementations and therefore the controlling role MUST be assumed by the initiator and
the controlled role MUST be assumed by the responder.

4. The STUN Binding Requests generated by the initiatorMAY include the USE-CANDIDATE
attribute to indicate that the initiator wishes to cease checks for this component.

5. The STUN Binding Requests generated by the initiator MUST include the ICE-
CONTROLLING attribute.

6. The STUN Binding Requests generated by the responder MUST include the ICE-
CONTROLLED attribute.

7. The partiesMUSTuse STUN short term credentials to authenticate requests and perform
message integrity checks. As in ICE-CORE, the username in the STUN Binding Request is

9RFC 5389: Session Traversal Utilities for NAT (STUN) <http://tools.ietf.org/html/rfc5389>.

9

http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5389

5 PROTOCOL DESCRIPTION

of the form ”ufrag-of-peer:ufrag-of-sender” and the password is the value of the ’pwd’
attribute provided by the peer. 10

When it receives a STUN Binding Request, each party MUST return a STUN Binding Response,
which indicates either an error case or the success case. As described in Section 7.1.2.2 of
ICE-CORE, a connectivity check succeeds if all of the following are true:

1. The STUN transaction generated a success response.

2. The source IP address and port of the response equals the destination IP address and port
to which the Binding Request was sent.

3. The destination IP address and port of the responsematch the source IP address and port
from which the Binding Request was sent.

For the candidates exchanged in the previous section, the connectivity checks would be as
follows (this diagram mirrors the example in ICE-CORE).

INITIATOR NAT RESPONDER
	STUN Binding Request
	from 192.0.2.1 :3478
	to 10.0.1.1 :8998
	(dropped)
	x====================
STUN Binding Request	
from 10.0.1.1 :8998	
to 192.0.2.1 :3478	
USE -CANDIDATE	
====================== >	
	STUN Binding Request
	from 192.0.2.3 :45664
	to 192.0.2.1 :3478
	USE -CANDIDATE
	====================== >
	STUN Binding Response
	from 192.0.2.1 :3478
	to 192.0.2.3 :45664
	<======================
STUN Binding Response	
from 192.0.2.1 :3478	
to 10.0.1.1 :8998	

10Thus when Romeo sends a STUN Binding Request to Juliet the credentials will be STUN username
”9uB6:8hhy” (ufrag provided by Juliet concatenated with ufrag provided by Romeo) and password
”YH75Fviy6338Vbrhrlp8Yh” (pwd provided by Juliet) whereas when Juliet sends a STUN Binding Request to
Romeo the credentials will be STUN username ”8hhy:9uB6” (ufrag provided by Romeo concatenated with ufrag
provided by Juliet) and password ”asd88fgpdd777uzjYhagZg” (pwd provided by Romeo).

10

5 PROTOCOL DESCRIPTION

map 192.0.2.3 :45664	
<======================	
<==Media Now Can Flow ==	
	STUN Binding Request
	from 192.0.2.1 :3478
	to 192.0.2.3 :45664
	<======================
STUN Binding Request	
from 192.0.2.1 :3478	
to 10.0.1.1 :8998	
<======================	
STUN Binding Response	
from 10.0.1.1 :8998	
to 192.0.2.1 :3478	
map 192.0.2.1 :3478	
====================== >	
	STUN Binding Response
	from 192.0.2.3 :45664
	to 192.0.2.1 :3478
	map 192.0.2.1 :3478
	====================== >
	== Media Now Can Flow==>

Note: Here the initiator (controlling agent) is using ”aggressive nomination” as described in
Section 8.1.1.2 of ICE-CORE and therefore includes the USE-CANDIDATE attribute in the STUN
Binding Requests it sends.

5.7 Acceptance of Successful Candidate

If, based on STUN connectivity checks, the parties determine that they will be able to ex-
change media between a given pair of local candidates and remote candidates (i.e., the pair
is ”nominated” and ICE processing is ”completed”), they can then begin using that candidate
pair to exchange media.
Once the parties have connectivity and therefore the initiator has completed ICE as explained
in ICE-CORE, the initiator MAY communicate the in-use candidate pair in the signalling
channel by sending a transport-info message that contains a <remote-candidate/> element
(this maps to the SDP ”remote-candidates” attribute as described in Section B.6 of ICE-CORE,
i.e., remote candidates are ”the actual candidates at R that were selected by the offerer”, of
which there will be only one at this stage of the ICE-UDP negotiation).

Listing 4: Initiator communicates in-use candidate

11

5 PROTOCOL DESCRIPTION

<iq from=’romeo@montague.lit/orchard ’
id=’pd81b49s ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’transport -info’
initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’this -is -the -audio -content ’>
<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’

pwd=’asd88fgpdd777uzjYhagZg ’
ufrag=’8hhy’>

<remote -candidate component=’1’
ip=’10.0.1.2 ’
port=’9001’/>

</transport >
</content >

</jingle >
</iq>

(In accordance with Jingle core, the responder will also acknowledge the transport-info
message.)
In the unlikely event that one of the parties determines that it cannot establish connectivity
even after sending and checking lower-priority candidates, it SHOULD terminate the session
as described in XEP-0166.

5.8 Negotiating a New Candidate

Even after media has begun to flow, either party MAY continue to send additional candidates
to the other party (e.g., because the user agent has become aware of a new media proxy or
network interface card). Such candidates are shared by sending a transport-info message.

Listing 5: Initiator sends a subsequent candidate
<iq from=’romeo@montague.lit/orchard ’

id=’uh3g1f48 ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’transport -info’
initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’this -is -the -audio -content ’>
<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’

pwd=’asd88fgpdd777uzjYhagZg ’
ufrag=’8hhy’>

<candidate component=’1’

12

5 PROTOCOL DESCRIPTION

foundation=’1’
generation=’0’
id=’m3110wc4nd ’
ip=’2001 :db8::9:1 ’
network=’0’
port=’9001’
priority=’21149780477 ’
protocol=’udp’
type=’host’/>

</transport >
</content >

</jingle >
</iq>

The receiving party MUST acknowledge receipt of the candidate.

Listing 6: Recipient acknowledges receipt
<iq from=’juliet@capulet.lit/balcony ’

id=’uh3g1f48 ’
to=’romeo@montague.lit/orchard ’
type=’result ’/>

The parties would check the newly-offered candidate for connectivity, as described previ-
ously. If the parties determine that media can flow over the candidate, they MAY then use the
new candidate in subsequent communications.

5.9 ICE Restarts

At any time, either party MAY restart the process of ICE negotiation by sending a candidate
with a ’generation’ value that is greater than the previous generation of candidates; when it
does so, it MUST generate new values for the ’pwd’ and ’ufrag’ attributes, consistent with the
definition of an ICE restart in Section 9.1.1.1 of ICE-CORE. As explained in ICE-CORE, typically
the ICE negotiation would be restarted to change the media target (e.g., an IP address change
for one of the parties) and certain third-party-call-control scenarios.

Listing 7: Initiator restarts ICE negotiation
<iq from=’romeo@montague.lit/orchard ’

id=’kl23fs71 ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’transport -info’
initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’this -is -the -audio -content ’>

13

6 FALLBACK TO RAW UDP

<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’
pwd=’bv71hdn38hgb39hf6xlk33 ’
ufrag=’g7qs’>

<candidate component=’1’
foundation=’1’
generation=’1’
id=’y3s2b30v3r ’
ip=’192.0.2.3 ’
network=’1’
port=’45665 ’
priority=’1694498815 ’
protocol=’udp’
type=’srflx ’/>

</transport >
</content >

</jingle >
</iq>

The recipient then acknowledges receipt.

Listing 8: Recipient acknowledges transport-info
<iq from=’juliet@capulet.lit/balcony ’

id=’kl23fs71 ’
to=’romeo@montague.lit/orchard ’
type=’result ’/>

The parties would then exchange new candidates to renegotiate connectivity and would check
the new candidates for connectivity, as described previously. If the parties determine that
media can flow over one of the new candidates, they can then use the successful candidate
in subsequent communications. However, while ICE is being renegotiated the parties can
continue to send media with the existing candidate-in-use.

6 Fallback to Raw UDP

It can happen that the responder does not support ICE, in which case it can be necessary
to fall back to use of the Jingle Raw UDP Transport Method 11. One typical scenario is
communication between an ICE-aware Jingle endpoint and a non-ICE-aware SIP endpoint
through a Jingle-to-SIP gateway, as follows:

1. The Jingle endpoint sends a session-initiate request to the SIP endpoint, specifying a
transport method of ICE-UDP.

11XEP-0177: Jingle Raw UDP Transport Method <http://xmpp.org/extensions/xep-0177.html>.

14

http://xmpp.org/extensions/xep-0177.html
http://xmpp.org/extensions/xep-0177.html

6 FALLBACK TO RAW UDP

2. Based on capabilities information, the gateway knows that the SIP endpoint does not
support ICE, so it enables the endpoints to use its media relay. It does this by:

• Sending a transport-replace message to the Jingle endpoint on behalf of the SIP
endpoint, specifying a transport method of Raw UDP and a candidate whose IP ad-
dress and port are hosted at the gateway.

• Sending SIP INVITE to the SIP endpoint on behalf of the Jingle endpoint, speciying
an IP address and port at the gateway.

The session flow is as follows.

Romeo Gateway Juliet
session -initiate	
(audio definition)	
------------------------>	
ack	
<------------------------	
transport -replace	
(Raw UDP)	
<------------------------	
ack	
------------------------>	
transport -accept	
------------------------>	
ack	
<------------------------	SIP INVITE
	------------------------>
	200 OK
	<------------------------
session -accept	
<------------------------	
ack	
------------------------>	
MEDIA SESSION	
<=== >	
	SIP BYE
	<------------------------
session -terminate	
<------------------------	
ack	
------------------------>	ack
	------------------------>

The protocol flow is as follows, showing only the stanzas sent between Romeo and the gateway
(acting on Juliet’s behalf).

15

6 FALLBACK TO RAW UDP

Listing 9: Initiator sends session-initiate
<iq from=’romeo@montague.lit/orchard ’

id=’p01hf63x ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -initiate ’
initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’voice ’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1 ’ media=’audio ’>

<payload -type id=’96’ name=’speex ’ clockrate=’16000 ’/>
<payload -type id=’97’ name=’speex ’ clockrate=’8000’/>
<payload -type id=’18’ name=’G729’/>
<payload -type id=’103’ name=’L16’ clockrate=’16000 ’ channels=’

2’/>
<payload -type id=’98’ name=’x-ISAC’ clockrate=’8000’/>

</description >
<transport xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’

pwd=’asd88fgpdd777uzjYhagZg ’
ufrag=’8hhy’>

<candidate component=’1’
foundation=’1’
generation=’0’
id=’el0747fg11 ’
ip=’10.0.1.1 ’
network=’1’
port=’8998’
priority=’2130706431 ’
protocol=’udp’
type=’host’/>

<candidate component=’1’
foundation=’2’
generation=’0’
id=’y3s2b30v3r ’
ip=’192.0.2.3 ’
network=’1’
port=’45664 ’
priority=’1694498815 ’
protocol=’udp’
rel -addr=’10.0.1.1 ’
rel -port=’8998’
type=’srflx ’/>

</transport >
</content >

</jingle >
</iq>

16

6 FALLBACK TO RAW UDP

Listing 10: Responder acknowledges session-initiate
<iq from=’juliet@capulet.lit/balcony ’

id=’p01hf63x ’
to=’romeo@montague.lit/orchard ’
type=’result ’/>

Immediately the gateway sends a transport-replace message to Romeo, specifying a transport
of Raw UDP with a candidate whose IP address and port identify a media relay at the gateway.

Listing 11: Gateway sends transport-replace on behalf of responder
<iq from=’juliet@capulet.lit/balcony ’

id=’hy2gd714 ’
to=’romeo@montague.lit/orchard ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’transport -replace ’
initiator=’romeo@montague.lit/orchard ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’voice1 ’>
<transport xmlns=’urn:xmpp:jingle:transports:raw -udp:1 ’>

<candidate generation=’0’
id=’a9j3mnbtu1 ’
ip=’10.1.1.104 ’
port=’13540 ’/>

</transport >
</content >

</jingle >
</iq>

Romeo then acknowledges the transport-replace message and immediately also sends a
transport-accept.

Listing 12: Initiator acknowledges transport-replace
<iq from=’romeo@montague.lit/orchard ’

id=’hy2gd714 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’/>

Listing 13: Initiator accepts new transport
<iq from=’romeo@montague.lit/orchard ’

id=’rb391gs5 ’
to=’juliet@capulet.lit/balcony ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’transport -accept ’
initiator=’romeo@montague.lit/orchard ’

17

6 FALLBACK TO RAW UDP

sid=’a73sjjvkla37jfea ’>
<content creator=’responder ’ name=’voice2 ’>

<transport xmlns=’urn:xmpp:jingle:transports:raw -udp:1 ’>
<candidate generation=’0’

id=’a9j3mnbtu1 ’
ip=’10.1.1.104 ’
port=’13540 ’/>

</transport >
</content >

</jingle >
</iq>

The gateway then acknowledges the acceptance on behalf of Juliet.

Listing 14: Gateway acknowledges transport-accept
<iq from=’juliet@capulet.lit/balcony ’

id=’rb391gs5 ’
to=’romeo@montague.lit/orchard ’
type=’result ’/>

The responder then sends a session-accept through the gateway.

Listing 15: Responder sends session-accept
<iq from=’juliet@capulet.lit/balcony ’

id=’ijf61d43 ’
to=’romeo@montague.lit/orchard ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -accept ’
initiator=’romeo@montague.lit/orchard ’
responder=’juliet@capulet.lit/balcony ’
sid=’a73sjjvkla37jfea ’>

<content creator=’initiator ’ name=’voice ’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1 ’ media=’audio ’>

<payload -type id=’18’ name=’G729’/>
</description >
<transport xmlns=’urn:xmpp:jingle:transports:raw -udp:1 ’/>

</content >
</jingle >

</iq>

Listing 16: Initiator acknowledges session-accept
<iq from=’romeo@montague.lit/orchard ’

id=’ijf61d43 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’/>

18

7 DETERMINING SUPPORT

The endpoints now begin to exchange session media, and can continue the session as long as
desired.

7 Determining Support

7.1 ICE Support

To advertise its support for the Jingle ICE-UDP Transport Method, when replying to Service
Discovery 12 information requests an entity MUST return URNs for any version of this protocol
that the entity supports -- e.g., ”urn:xmpp:jingle:transports:ice-udp:1” for this version and
”urn:xmpp:jingle:transports:ice-udp:0” for the previous version (see Namespace Versioning
regarding the possibility of incrementing the version number).

Listing 17: Service discovery information request
<iq from=’romeo@montague.lit/orchard ’

id=’cv5x41g9 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 18: Service discovery information response
<iq from=’juliet@capulet.lit/balcony ’

id=’cv5x41g9 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:jingle:1 ’/>
<feature var=’urn:xmpp:jingle:transports:ice -udp:0 ’/>
<feature var=’urn:xmpp:jingle:transports:ice -udp:1 ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:1 ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:audio ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:video ’/>

</query >
</iq>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined
in Entity Capabilities 13. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

12XEP-0030: Service Discovery <http://xmpp.org/extensions/xep-0030.html>.
13XEP-0115: Entity Capabilities <http://xmpp.org/extensions/xep-0115.html>.

19

http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0115.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0115.html

9 DEPLOYMENT NOTES

7.2 SDP Offer / Answer Support

If an entity supports the SDP offer / answermodel described in RFC 3264 and therefore prefers
to receive multiple candidates in a single transport-info message, it MUST advertise support
for the ”urn:ietf:rfc:3264” service discovery feature. Typically this feature will be advertised
only by gateways between Jingle and SIP.

Listing 19: Service discovery information request
<iq from=’romeo@montague.lit/orchard ’

id=’ce81f5d6 ’
to=’sip.shakespeare.lit’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 20: Service discovery information response
<iq from=’sip.shakespeare.lit’

id=’ce81f5d6 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:ietf:rfc:3264 ’/>
<feature var=’urn:xmpp:jingle:1 ’/>
<feature var=’urn:xmpp:jingle:transports:ice -udp:0 ’/>
<feature var=’urn:xmpp:jingle:transports:ice -udp:1 ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:1 ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:audio ’/>
<feature var=’urn:xmpp:jingle:apps:rtp:video ’/>

</query >
</iq>

8 Implementation Notes

In order to speed the negotiation process so that media can flow as quickly as possible, the
initiator SHOULD gather and prioritize candidates in advance, or as soon as the principal
begins the process of initiating a session.

9 Deployment Notes

This specification applies exclusively to Jingle clients and places no additional requirements
on XMPP servers. However, service administrators might wish to deploy a STUN server in
order to ease the client-to-client negotiation process and a TURN server for media relaying

20

10 SECURITY CONSIDERATIONS

(see TURN 14). Deployment of support for External Service Discovery 15 might also be helpful.

10 Security Considerations

10.1 Sharing IP Addresses

By definition, the exchange of transport candidates results in exposure of the sender’s IP
addresses, which comprise a form of personally identifying information. A Jingle client MUST
enable a user to control which entities will be allowed to receive such information. If a
human user explicitly accepts a session request, then the client SHOULD consider that action
to imply approval of IP address sharing. However, waiting for a human user to explicitly
accept the session request can result in delays during session setup, since it is more efficient
to immediately begin sharing transport candidates. Therefore, it is RECOMMENDED for the
client to immediately send transport candidates to a contact (without waiting for explicit user
approval of the session request) in the following cases:

1. The user has permanently and formally authorized the contact to view the user’s pres-
ence information via a presence subscription as reflected in an XMPP roster item (see
XMPP IM 16).

2. The user has temporarily and dynamically shared presence with the contact via ”di-
rected presence” as described in RFC 3921.

3. The user has explicitly added the contact to a ”whitelist” of entities who are allowed to
access the user’s personally-identifying information.

10.2 Encryption of Media

A Jingle implementation SHOULD support security preconditions that are enforced before
application media is allowed to flow over a UDP association, such as those described in Jingle
XTLS 17.
Application types that use the Jingle ICE-UDP transport method MAY also define their own
application-specific encryption methods, such as the Secure Real-time Transport Protocol
(SRTP) for RTP exchanges as described in Jingle RTP Sessions 18.

14Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN) <ht
tp://tools.ietf.org/html/draft-ietf-behave-turn>. Work in progress.

15XEP-0215: External Service Discovery <http://xmpp.org/extensions/xep-0215.html>.
16RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool

s.ietf.org/html/rfc6121>.
17Extensible Messaging and Presence Protocol (XMPP) End-to-End Encryption Using Transport Layer Security

(”XTLS”) <http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption>.
18XEP-0167: Jingle RTP Sessions <http://xmpp.org/extensions/xep-0167.html>.

21

http://tools.ietf.org/html/draft-ietf-behave-turn
http://xmpp.org/extensions/xep-0215.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://xmpp.org/extensions/xep-0167.html
http://tools.ietf.org/html/draft-ietf-behave-turn
http://tools.ietf.org/html/draft-ietf-behave-turn
http://xmpp.org/extensions/xep-0215.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://xmpp.org/extensions/xep-0167.html

12 XMPP REGISTRAR CONSIDERATIONS

11 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
19.

12 XMPP Registrar Considerations

12.1 Protocol Namespaces

This specification defines the following XML namespace:

• urn:xmpp:jingle:transports:ice-udp:1

The XMPP Registrar 20 includes the foregoing namespace in its registry at <http:
//xmpp.org/registrar/namespaces.html>, as governed by XMPP Registrar Function
21.

12.2 Protocol Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

12.3 Service Discovery Features

If an entity supports the SDP offer / answermodel described in RFC 3264 and therefore prefers
to receive one transport-info message with multiple candidates, it MUST advertise support
for the ”urn:ietf:rfc:3264” feature.
The registry submission is as follows.

<var>
<name>urn:ietf:rfc:3264 </name>
<desc>

Signals support for the SDP offer / answer model

19The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

20The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <http://xmpp.org/registrar/>.

21XEP-0053: XMPP Registrar Function <http://xmpp.org/extensions/xep-0053.html>.

22

http://www.iana.org/
http://xmpp.org/registrar/
http://xmpp.org/registrar/namespaces.html
http://xmpp.org/registrar/namespaces.html
http://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
http://xmpp.org/registrar/
http://xmpp.org/extensions/xep-0053.html

13 XML SCHEMA

described in RFC 3264
</desc>
<doc>XEP -0176 </doc>

</var>

12.4 Jingle Transport Methods

The XMPP Registrar includes ”ice-udp” in its registry of Jingle transport methods at
<http://xmpp.org/registrar/jingle-transports.html>. The registry submission is as
follows:

<transport >
<name>ice -udp</name>
<desc>

A method for negotiation of out -of -band UDP connections
with built -in NAT and firewall traversal , equivalent to
the IETF’s␣Interactive␣Connectivity␣Establishment␣(ICE)

␣␣␣␣methodology␣when␣resulting␣in␣the␣use␣of␣UDP␣as␣the
␣␣␣␣transport␣protocol.
␣␣</desc >
␣␣<type >datagram </type >
␣␣<doc >XEP -0176 </doc >
</transport >

13 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:jingle:transports:ice -udp:1 ’
xmlns=’urn:xmpp:jingle:transports:ice -udp:1 ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0176: http://www.xmpp.org/extensions/xep -0176. html

</xs:documentation >
</xs:annotation >

<xs:element name=’transport ’>
<xs:complexType >

<xs:choice minOccurs=’0’>
<xs:sequence >

23

http://xmpp.org/registrar/jingle-transports.html

13 XML SCHEMA

<xs:element name=’candidate ’
type=’candidateElementType ’
minOccurs=’1’
maxOccurs=’unbounded ’/>

</xs:sequence >
<xs:sequence >

<xs:element name=’remote -candidate ’
type=’remoteCandidateElementType ’
minOccurs=’1’
maxOccurs=’1’/>

</xs:sequence >
</xs:choice >
<xs:attribute name=’pwd’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’ufrag ’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:complexType name=’candidateElementType ’>
<xs:simpleContent >

<xs:extension base=’empty ’>
<xs:attribute name=’component ’ type=’xs:unsignedByte ’ use=’

required ’/>
<xs:attribute name=’foundation ’ type=’xs:unsignedByte ’ use=’

required ’/>
<xs:attribute name=’generation ’ type=’xs:unsignedByte ’ use=’

required ’/>
<xs:attribute name=’id’ type=’xs:NCName ’ use=’required ’/>
<xs:attribute name=’ip’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’network ’ type=’xs:unsignedByte ’ use=’

required ’/>
<xs:attribute name=’port’ type=’xs:unsignedShort ’ use=’

required ’/>
<xs:attribute name=’priority ’ type=’xs:positiveInteger ’ use=’

required ’/>
<xs:attribute name=’protocol ’ type=’xs:NCName ’ use=’required ’/

>
<xs:attribute name=’rel -addr’ type=’xs:string ’ use=’optional ’/

>
<xs:attribute name=’rel -port’ type=’xs:unsignedShort ’ use=’

optional ’/>
<xs:attribute name=’type’ use=’required ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’host’/>
<xs:enumeration value=’prflx ’/>
<xs:enumeration value=’relay ’/>
<xs:enumeration value=’srflx ’/>

</xs:restriction >
</xs:simpleType >

24

14 ACKNOWLEDGEMENTS

</xs:attribute >
</xs:extension >

</xs:simpleContent >
</xs:complexType >

<xs:complexType name=’remoteCandidateElementType ’>
<xs:simpleContent >

<xs:extension base=’empty ’>
<xs:attribute name=’component ’ type=’xs:unsignedByte ’ use=’

required ’/>
<xs:attribute name=’ip’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’port’ type=’xs:unsignedShort ’ use=’

required ’/>
</xs:extension >

</xs:simpleContent >
</xs:complexType >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

14 Acknowledgements

Thanks to Diana Cionoiu, Olivier Crête, Tim Julien, Steffen Larsen, Robert McQueen, Mike
Ruprecht, Justin Uberti, Unnikrishnan Vikrama Panicker, and Paul Witty for their feedback.

25

	Introduction
	Glossary
	Requirements
	Jingle Conformance
	Protocol Description
	Overall Flow
	Session Initiation
	Syntax
	Response
	Candidate Negotiation
	Connectivity Checks
	Acceptance of Successful Candidate
	Negotiating a New Candidate
	ICE Restarts

	Fallback to Raw UDP
	Determining Support
	ICE Support
	SDP Offer / Answer Support

	Implementation Notes
	Deployment Notes
	Security Considerations
	Sharing IP Addresses
	Encryption of Media

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Protocol Versioning
	Service Discovery Features
	Jingle Transport Methods

	XML Schema
	Acknowledgements

